src/ZF/QPair.thy
author lcp
Thu, 03 Feb 1994 17:16:40 +0100
changeset 263 d45f0af592f0
parent 124 858ab9a9b047
child 435 ca5356bd315a
permissions -rw-r--r--
no longer removes *.z

(*  Title: 	ZF/qpair.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum + "simpdata" +
consts
  QPair     :: "[i, i] => i"               	("<(_;/ _)>")
  qsplit    :: "[[i,i] => i, i] => i"
  qfsplit   :: "[[i,i] => o, i] => o"
  qconverse :: "i => i"
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
  " <*>"    :: "[i, i] => i"         		("(_ <*>/ _)" [81, 80] 80)
  QSigma    :: "[i, i => i] => i"

  "<+>"     :: "[i,i]=>i"      			(infixr 65)
  QInl,QInr :: "i=>i"
  qcase     :: "[i=>i, i=>i, i]=>i"

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

rules
  QPair_def       "<a;b> == a+b"
  qsplit_def      "qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)"
  qfsplit_def     "qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)"
  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", " <*>"))];