(* Title: Tools/code/code_preproc.ML
Author: Florian Haftmann, TU Muenchen
Preprocessing code equations into a well-sorted system
in a graph with explicit dependencies.
*)
signature CODE_PREPROC =
sig
val map_pre: (simpset -> simpset) -> theory -> theory
val map_post: (simpset -> simpset) -> theory -> theory
val add_unfold: thm -> theory -> theory
val add_functrans: string * (theory -> (thm * bool) list -> (thm * bool) list option) -> theory -> theory
val del_functrans: string -> theory -> theory
val simple_functrans: (theory -> thm list -> thm list option)
-> theory -> (thm * bool) list -> (thm * bool) list option
val print_codeproc: theory -> unit
type code_algebra
type code_graph
val eqns: code_graph -> string -> (thm * bool) list
val typ: code_graph -> string -> (string * sort) list * typ
val all: code_graph -> string list
val pretty: theory -> code_graph -> Pretty.T
val obtain: theory -> string list -> term list -> code_algebra * code_graph
val eval_conv: theory -> (sort -> sort)
-> (code_algebra -> code_graph -> (string * sort) list -> term -> cterm -> thm) -> cterm -> thm
val eval: theory -> (sort -> sort) -> ((term -> term) -> 'a -> 'a)
-> (code_algebra -> code_graph -> (string * sort) list -> term -> 'a) -> term -> 'a
val setup: theory -> theory
end
structure Code_Preproc : CODE_PREPROC =
struct
(** preprocessor administration **)
(* theory data *)
datatype thmproc = Thmproc of {
pre: simpset,
post: simpset,
functrans: (string * (serial * (theory -> (thm * bool) list -> (thm * bool) list option))) list
};
fun make_thmproc ((pre, post), functrans) =
Thmproc { pre = pre, post = post, functrans = functrans };
fun map_thmproc f (Thmproc { pre, post, functrans }) =
make_thmproc (f ((pre, post), functrans));
fun merge_thmproc (Thmproc { pre = pre1, post = post1, functrans = functrans1 },
Thmproc { pre = pre2, post = post2, functrans = functrans2 }) =
let
val pre = Simplifier.merge_ss (pre1, pre2);
val post = Simplifier.merge_ss (post1, post2);
val functrans = AList.merge (op =) (eq_fst (op =)) (functrans1, functrans2);
in make_thmproc ((pre, post), functrans) end;
structure Code_Preproc_Data = TheoryDataFun
(
type T = thmproc;
val empty = make_thmproc ((Simplifier.empty_ss, Simplifier.empty_ss), []);
fun copy spec = spec;
val extend = copy;
fun merge pp = merge_thmproc;
);
fun the_thmproc thy = case Code_Preproc_Data.get thy
of Thmproc x => x;
fun delete_force msg key xs =
if AList.defined (op =) xs key then AList.delete (op =) key xs
else error ("No such " ^ msg ^ ": " ^ quote key);
fun map_data f thy =
thy
|> Code.purge_data
|> (Code_Preproc_Data.map o map_thmproc) f;
val map_pre_post = map_data o apfst;
val map_pre = map_pre_post o apfst;
val map_post = map_pre_post o apsnd;
val add_unfold = map_pre o MetaSimplifier.add_simp;
val del_unfold = map_pre o MetaSimplifier.del_simp;
val add_post = map_post o MetaSimplifier.add_simp;
val del_post = map_post o MetaSimplifier.del_simp;
fun add_unfold_post raw_thm thy =
let
val thm = LocalDefs.meta_rewrite_rule (ProofContext.init thy) raw_thm;
val thm_sym = Thm.symmetric thm;
in
thy |> map_pre_post (fn (pre, post) =>
(pre |> MetaSimplifier.add_simp thm, post |> MetaSimplifier.del_simp thm_sym))
end;
fun add_functrans (name, f) = (map_data o apsnd)
(AList.update (op =) (name, (serial (), f)));
fun del_functrans name = (map_data o apsnd)
(delete_force "function transformer" name);
(* post- and preprocessing *)
fun apply_functrans thy c _ [] = []
| apply_functrans thy c [] eqns = eqns
| apply_functrans thy c functrans eqns = eqns
|> perhaps (perhaps_loop (perhaps_apply functrans))
|> Code.assert_eqns_const thy c;
fun rhs_conv conv thm = Thm.transitive thm ((conv o Thm.rhs_of) thm);
fun eqn_conv conv =
let
fun lhs_conv ct = if can Thm.dest_comb ct
then Conv.combination_conv lhs_conv conv ct
else Conv.all_conv ct;
in Conv.combination_conv (Conv.arg_conv lhs_conv) conv end;
val rewrite_eqn = Conv.fconv_rule o eqn_conv o Simplifier.rewrite;
fun term_of_conv thy f =
Thm.cterm_of thy
#> f
#> Thm.prop_of
#> Logic.dest_equals
#> snd;
fun preprocess thy c eqns =
let
val pre = (Simplifier.theory_context thy o #pre o the_thmproc) thy;
val functrans = (map (fn (_, (_, f)) => f thy) o #functrans
o the_thmproc) thy;
in
eqns
|> apply_functrans thy c functrans
|> (map o apfst) (rewrite_eqn pre)
|> (map o apfst) (AxClass.unoverload thy)
|> map (Code.assert_eqn thy)
|> burrow_fst (Code.norm_args thy)
|> burrow_fst (Code.norm_varnames thy)
end;
fun preprocess_conv thy ct =
let
val pre = (Simplifier.theory_context thy o #pre o the_thmproc) thy;
in
ct
|> Simplifier.rewrite pre
|> rhs_conv (AxClass.unoverload_conv thy)
end;
fun postprocess_conv thy ct =
let
val post = (Simplifier.theory_context thy o #post o the_thmproc) thy;
in
ct
|> AxClass.overload_conv thy
|> rhs_conv (Simplifier.rewrite post)
end;
fun postprocess_term thy = term_of_conv thy (postprocess_conv thy);
fun print_codeproc thy =
let
val ctxt = ProofContext.init thy;
val pre = (#pre o the_thmproc) thy;
val post = (#post o the_thmproc) thy;
val functrans = (map fst o #functrans o the_thmproc) thy;
in
(Pretty.writeln o Pretty.chunks) [
Pretty.block [
Pretty.str "preprocessing simpset:",
Pretty.fbrk,
Simplifier.pretty_ss ctxt pre
],
Pretty.block [
Pretty.str "postprocessing simpset:",
Pretty.fbrk,
Simplifier.pretty_ss ctxt post
],
Pretty.block (
Pretty.str "function transformers:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map Pretty.str) functrans
)
]
end;
fun simple_functrans f thy eqns = case f thy (map fst eqns)
of SOME thms' => SOME (map (rpair (forall snd eqns)) thms')
| NONE => NONE;
(** sort algebra and code equation graph types **)
type code_algebra = (sort -> sort) * Sorts.algebra;
type code_graph = (((string * sort) list * typ) * (thm * bool) list) Graph.T;
fun eqns eqngr = these o Option.map snd o try (Graph.get_node eqngr);
fun typ eqngr = fst o Graph.get_node eqngr;
fun all eqngr = Graph.keys eqngr;
fun pretty thy eqngr =
AList.make (snd o Graph.get_node eqngr) (Graph.keys eqngr)
|> (map o apfst) (Code.string_of_const thy)
|> sort (string_ord o pairself fst)
|> map (fn (s, thms) =>
(Pretty.block o Pretty.fbreaks) (
Pretty.str s
:: map (Display.pretty_thm o fst) thms
))
|> Pretty.chunks;
(** the Waisenhaus algorithm **)
(* auxiliary *)
fun is_proper_class thy = can (AxClass.get_info thy);
fun complete_proper_sort thy =
Sign.complete_sort thy #> filter (is_proper_class thy);
fun inst_params thy tyco =
map (fn (c, _) => AxClass.param_of_inst thy (c, tyco))
o maps (#params o AxClass.get_info thy);
fun consts_of thy eqns = [] |> (fold o fold o fold_aterms)
(fn Const (c, ty) => insert (op =) (c, Sign.const_typargs thy (c, Logic.unvarifyT ty)) | _ => I)
(map (op :: o swap o apfst (snd o strip_comb) o Logic.dest_equals o Thm.plain_prop_of o fst) eqns);
fun default_typscheme_of thy c =
let
val ty = (snd o dest_Const o Term_Subst.zero_var_indexes o curry Const c
o Type.strip_sorts o Sign.the_const_type thy) c;
in case AxClass.class_of_param thy c
of SOME class => ([(Name.aT, [class])], ty)
| NONE => Code.typscheme thy (c, ty)
end;
fun tyscm_rhss_of thy c eqns =
let
val tyscm = case eqns
of [] => default_typscheme_of thy c
| ((thm, _) :: _) => Code.typscheme_eqn thy thm;
val rhss = consts_of thy eqns;
in (tyscm, rhss) end;
(* data structures *)
datatype const = Fun of string | Inst of class * string;
fun const_ord (Fun c1, Fun c2) = fast_string_ord (c1, c2)
| const_ord (Inst class_tyco1, Inst class_tyco2) =
prod_ord fast_string_ord fast_string_ord (class_tyco1, class_tyco2)
| const_ord (Fun _, Inst _) = LESS
| const_ord (Inst _, Fun _) = GREATER;
type var = const * int;
structure Vargraph =
Graph(type key = var val ord = prod_ord const_ord int_ord);
datatype styp = Tyco of string * styp list | Var of var | Free;
fun styp_of c_lhs (Type (tyco, tys)) = Tyco (tyco, map (styp_of c_lhs) tys)
| styp_of c_lhs (TFree (v, _)) = case c_lhs
of SOME (c, lhs) => Var (Fun c, find_index (fn (v', _) => v = v') lhs)
| NONE => Free;
type vardeps_data = ((string * styp list) list * class list) Vargraph.T
* (((string * sort) list * (thm * bool) list) Symtab.table
* (class * string) list);
val empty_vardeps_data : vardeps_data =
(Vargraph.empty, (Symtab.empty, []));
(* retrieving equations and instances from the background context *)
fun obtain_eqns thy eqngr c =
case try (Graph.get_node eqngr) c
of SOME ((lhs, _), eqns) => ((lhs, []), [])
| NONE => let
val eqns = Code.these_eqns thy c
|> preprocess thy c;
val ((lhs, _), rhss) = tyscm_rhss_of thy c eqns;
in ((lhs, rhss), eqns) end;
fun obtain_instance thy arities (inst as (class, tyco)) =
case AList.lookup (op =) arities inst
of SOME classess => (classess, ([], []))
| NONE => let
val all_classes = complete_proper_sort thy [class];
val superclasses = remove (op =) class all_classes
val classess = map (complete_proper_sort thy)
(Sign.arity_sorts thy tyco [class]);
val inst_params = inst_params thy tyco all_classes;
in (classess, (superclasses, inst_params)) end;
(* computing instantiations *)
fun add_classes thy arities eqngr c_k new_classes vardeps_data =
let
val (styps, old_classes) = Vargraph.get_node (fst vardeps_data) c_k;
val diff_classes = new_classes |> subtract (op =) old_classes;
in if null diff_classes then vardeps_data
else let
val c_ks = Vargraph.imm_succs (fst vardeps_data) c_k |> insert (op =) c_k;
in
vardeps_data
|> (apfst o Vargraph.map_node c_k o apsnd) (append diff_classes)
|> fold (fn styp => fold (ensure_typmatch_inst thy arities eqngr styp) new_classes) styps
|> fold (fn c_k => add_classes thy arities eqngr c_k diff_classes) c_ks
end end
and add_styp thy arities eqngr c_k tyco_styps vardeps_data =
let
val (old_styps, classes) = Vargraph.get_node (fst vardeps_data) c_k;
in if member (op =) old_styps tyco_styps then vardeps_data
else
vardeps_data
|> (apfst o Vargraph.map_node c_k o apfst) (cons tyco_styps)
|> fold (ensure_typmatch_inst thy arities eqngr tyco_styps) classes
end
and add_dep thy arities eqngr c_k c_k' vardeps_data =
let
val (_, classes) = Vargraph.get_node (fst vardeps_data) c_k;
in
vardeps_data
|> add_classes thy arities eqngr c_k' classes
|> apfst (Vargraph.add_edge (c_k, c_k'))
end
and ensure_typmatch_inst thy arities eqngr (tyco, styps) class vardeps_data =
if can (Sign.arity_sorts thy tyco) [class]
then vardeps_data
|> ensure_inst thy arities eqngr (class, tyco)
|> fold_index (fn (k, styp) =>
ensure_typmatch thy arities eqngr styp (Inst (class, tyco), k)) styps
else vardeps_data (*permissive!*)
and ensure_inst thy arities eqngr (inst as (class, tyco)) (vardeps_data as (_, (_, insts))) =
if member (op =) insts inst then vardeps_data
else let
val (classess, (superclasses, inst_params)) =
obtain_instance thy arities inst;
in
vardeps_data
|> (apsnd o apsnd) (insert (op =) inst)
|> fold_index (fn (k, _) =>
apfst (Vargraph.new_node ((Inst (class, tyco), k), ([] ,[])))) classess
|> fold (fn superclass => ensure_inst thy arities eqngr (superclass, tyco)) superclasses
|> fold (ensure_fun thy arities eqngr) inst_params
|> fold_index (fn (k, classes) =>
add_classes thy arities eqngr (Inst (class, tyco), k) classes
#> fold (fn superclass =>
add_dep thy arities eqngr (Inst (superclass, tyco), k)
(Inst (class, tyco), k)) superclasses
#> fold (fn inst_param =>
add_dep thy arities eqngr (Fun inst_param, k)
(Inst (class, tyco), k)
) inst_params
) classess
end
and ensure_typmatch thy arities eqngr (Tyco tyco_styps) c_k vardeps_data =
vardeps_data
|> add_styp thy arities eqngr c_k tyco_styps
| ensure_typmatch thy arities eqngr (Var c_k') c_k vardeps_data =
vardeps_data
|> add_dep thy arities eqngr c_k c_k'
| ensure_typmatch thy arities eqngr Free c_k vardeps_data =
vardeps_data
and ensure_rhs thy arities eqngr (c', styps) vardeps_data =
vardeps_data
|> ensure_fun thy arities eqngr c'
|> fold_index (fn (k, styp) =>
ensure_typmatch thy arities eqngr styp (Fun c', k)) styps
and ensure_fun thy arities eqngr c (vardeps_data as (_, (eqntab, _))) =
if Symtab.defined eqntab c then vardeps_data
else let
val ((lhs, rhss), eqns) = obtain_eqns thy eqngr c;
val rhss' = (map o apsnd o map) (styp_of (SOME (c, lhs))) rhss;
in
vardeps_data
|> (apsnd o apfst) (Symtab.update_new (c, (lhs, eqns)))
|> fold_index (fn (k, _) =>
apfst (Vargraph.new_node ((Fun c, k), ([] ,[])))) lhs
|> fold_index (fn (k, (_, sort)) =>
add_classes thy arities eqngr (Fun c, k) (complete_proper_sort thy sort)) lhs
|> fold (ensure_rhs thy arities eqngr) rhss'
end;
(* applying instantiations *)
fun dicts_of thy (proj_sort, algebra) (T, sort) =
let
fun class_relation (x, _) _ = x;
fun type_constructor tyco xs class =
inst_params thy tyco (Sorts.complete_sort algebra [class])
@ (maps o maps) fst xs;
fun type_variable (TFree (_, sort)) = map (pair []) (proj_sort sort);
in
flat (Sorts.of_sort_derivation (Syntax.pp_global thy) algebra
{ class_relation = class_relation, type_constructor = type_constructor,
type_variable = type_variable } (T, proj_sort sort)
handle Sorts.CLASS_ERROR _ => [] (*permissive!*))
end;
fun inst_thm thy tvars' thm =
let
val tvars = (Term.add_tvars o Thm.prop_of) thm [];
val inter_sort = Sorts.inter_sort (Sign.classes_of thy);
fun mk_inst (tvar as (v, sort)) = case Vartab.lookup tvars' v
of SOME sort' => SOME (pairself (Thm.ctyp_of thy o TVar)
(tvar, (v, inter_sort (sort, sort'))))
| NONE => NONE;
val insts = map_filter mk_inst tvars;
in Thm.instantiate (insts, []) thm end;
fun add_arity thy vardeps (class, tyco) =
AList.default (op =)
((class, tyco), map (fn k => (snd o Vargraph.get_node vardeps) (Inst (class, tyco), k))
(0 upto Sign.arity_number thy tyco - 1));
fun add_eqs thy vardeps (c, (proto_lhs, proto_eqns)) (rhss, eqngr) =
if can (Graph.get_node eqngr) c then (rhss, eqngr)
else let
val lhs = map_index (fn (k, (v, _)) =>
(v, snd (Vargraph.get_node vardeps (Fun c, k)))) proto_lhs;
val inst_tab = Vartab.empty |> fold (fn (v, sort) =>
Vartab.update ((v, 0), sort)) lhs;
val eqns = proto_eqns
|> (map o apfst) (inst_thm thy inst_tab);
val (tyscm, rhss') = tyscm_rhss_of thy c eqns;
val eqngr' = Graph.new_node (c, (tyscm, eqns)) eqngr;
in (map (pair c) rhss' @ rhss, eqngr') end;
fun extend_arities_eqngr thy cs ts (arities, eqngr) =
let
val cs_rhss = (fold o fold_aterms) (fn Const (c_ty as (c, _)) =>
insert (op =) (c, (map (styp_of NONE) o Sign.const_typargs thy) c_ty) | _ => I) ts [];
val (vardeps, (eqntab, insts)) = empty_vardeps_data
|> fold (ensure_fun thy arities eqngr) cs
|> fold (ensure_rhs thy arities eqngr) cs_rhss;
val arities' = fold (add_arity thy vardeps) insts arities;
val pp = Syntax.pp_global thy;
val algebra = Sorts.subalgebra pp (is_proper_class thy)
(AList.lookup (op =) arities') (Sign.classes_of thy);
val (rhss, eqngr') = Symtab.fold (add_eqs thy vardeps) eqntab ([], eqngr);
fun deps_of (c, rhs) = c :: maps (dicts_of thy algebra)
(rhs ~~ (map snd o fst o fst o Graph.get_node eqngr') c);
val eqngr'' = fold (fn (c, rhs) => fold
(curry Graph.add_edge c) (deps_of rhs)) rhss eqngr';
in (algebra, (arities', eqngr'')) end;
(** store for preprocessed arities and code equations **)
structure Wellsorted = Code_Data_Fun
(
type T = ((string * class) * sort list) list * code_graph;
val empty = ([], Graph.empty);
fun purge thy cs (arities, eqngr) =
let
val del_cs = ((Graph.all_preds eqngr
o filter (can (Graph.get_node eqngr))) cs);
val del_arities = del_cs
|> map_filter (AxClass.inst_of_param thy)
|> maps (fn (c, tyco) =>
(map (rpair tyco) o Sign.complete_sort thy o the_list
o AxClass.class_of_param thy) c);
val arities' = fold (AList.delete (op =)) del_arities arities;
val eqngr' = Graph.del_nodes del_cs eqngr;
in (arities', eqngr') end;
);
(** retrieval and evaluation interfaces **)
fun obtain thy cs ts = apsnd snd
(Wellsorted.change_yield thy (extend_arities_eqngr thy cs ts));
fun prepare_sorts_typ prep_sort
= map_type_tfree (fn (v, sort) => TFree (v, prep_sort sort));
fun prepare_sorts prep_sort (Const (c, ty)) =
Const (c, prepare_sorts_typ prep_sort ty)
| prepare_sorts prep_sort (t1 $ t2) =
prepare_sorts prep_sort t1 $ prepare_sorts prep_sort t2
| prepare_sorts prep_sort (Abs (v, ty, t)) =
Abs (v, prepare_sorts_typ prep_sort ty, prepare_sorts prep_sort t)
| prepare_sorts _ (t as Bound _) = t;
fun gen_eval thy cterm_of conclude_evaluation prep_sort evaluator proto_ct =
let
val pp = Syntax.pp_global thy;
val ct = cterm_of proto_ct;
val _ = (Sign.no_frees pp o map_types (K dummyT) o Sign.no_vars pp)
(Thm.term_of ct);
val thm = preprocess_conv thy ct;
val ct' = Thm.rhs_of thm;
val t' = Thm.term_of ct';
val vs = Term.add_tfrees t' [];
val consts = fold_aterms
(fn Const (c, _) => insert (op =) c | _ => I) t' [];
val t'' = prepare_sorts prep_sort t';
val (algebra', eqngr') = obtain thy consts [t''];
in conclude_evaluation (evaluator algebra' eqngr' vs t'' ct') thm end;
fun simple_evaluator evaluator algebra eqngr vs t ct =
evaluator algebra eqngr vs t;
fun eval_conv thy =
let
fun conclude_evaluation thm2 thm1 =
let
val thm3 = postprocess_conv thy (Thm.rhs_of thm2);
in
Thm.transitive thm1 (Thm.transitive thm2 thm3) handle THM _ =>
error ("could not construct evaluation proof:\n"
^ (cat_lines o map Display.string_of_thm) [thm1, thm2, thm3])
end;
in gen_eval thy I conclude_evaluation end;
fun eval thy prep_sort postproc evaluator = gen_eval thy (Thm.cterm_of thy)
(K o postproc (postprocess_term thy)) prep_sort (simple_evaluator evaluator);
(** setup **)
val setup =
let
fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
fun add_del_attribute_parser add del =
Attrib.add_del (mk_attribute add) (mk_attribute del);
fun both f g thm = f thm #> g thm;
in
Attrib.setup @{binding code_unfold} (add_del_attribute_parser
(both Codegen.add_unfold add_unfold) (both Codegen.del_unfold del_unfold))
"preprocessing equations for code generators"
#> Attrib.setup @{binding code_inline} (add_del_attribute_parser add_unfold del_unfold)
"preprocessing equations for code generator"
#> Attrib.setup @{binding code_post} (add_del_attribute_parser add_post del_post)
"postprocessing equations for code generator"
#> Attrib.setup @{binding code_unfold_post} (Scan.succeed (mk_attribute add_unfold_post))
"pre- and postprocessing equations for code generator"
end;
val _ =
OuterSyntax.improper_command "print_codeproc" "print code preprocessor setup"
OuterKeyword.diag (Scan.succeed
(Toplevel.no_timing o Toplevel.unknown_theory o Toplevel.keep
(print_codeproc o Toplevel.theory_of)));
end; (*struct*)