(* Title: HOL/MicroJava/BV/LBVSpec.thy
ID: $Id$
Author: Gerwin Klein
Copyright 1999 Technische Universitaet Muenchen
*)
header {* \isaheader{The Lightweight Bytecode Verifier} *}
theory LBVSpec imports SemilatAlg Opt begin
types
's certificate = "'s list"
consts
merge :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> nat \<Rightarrow> (nat \<times> 's) list \<Rightarrow> 's \<Rightarrow> 's"
primrec
"merge cert f r T pc [] x = x"
"merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in
if pc'=pc+1 then s' +_f x
else if s' <=_r (cert!pc') then x
else T)"
constdefs
wtl_inst :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow>
's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
"wtl_inst cert f r T step pc s \<equiv> merge cert f r T pc (step pc s) (cert!(pc+1))"
wtl_cert :: "'s certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
"wtl_cert cert f r T B step pc s \<equiv>
if cert!pc = B then
wtl_inst cert f r T step pc s
else
if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T"
consts
wtl_inst_list :: "'a list \<Rightarrow> 's certificate \<Rightarrow> 's binop \<Rightarrow> 's ord \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow>
's step_type \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's"
primrec
"wtl_inst_list [] cert f r T B step pc s = s"
"wtl_inst_list (i#is) cert f r T B step pc s =
(let s' = wtl_cert cert f r T B step pc s in
if s' = T \<or> s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')"
constdefs
cert_ok :: "'s certificate \<Rightarrow> nat \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 's set \<Rightarrow> bool"
"cert_ok cert n T B A \<equiv> (\<forall>i < n. cert!i \<in> A \<and> cert!i \<noteq> T) \<and> (cert!n = B)"
constdefs
bottom :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool"
"bottom r B \<equiv> \<forall>x. B <=_r x"
locale (open) lbv = semilat +
fixes T :: "'a" ("\<top>")
fixes B :: "'a" ("\<bottom>")
fixes step :: "'a step_type"
assumes top: "top r \<top>"
assumes T_A: "\<top> \<in> A"
assumes bot: "bottom r \<bottom>"
assumes B_A: "\<bottom> \<in> A"
fixes merge :: "'a certificate \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a"
defines mrg_def: "merge cert \<equiv> LBVSpec.merge cert f r \<top>"
fixes wti :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
defines wti_def: "wti cert \<equiv> wtl_inst cert f r \<top> step"
fixes wtc :: "'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
defines wtc_def: "wtc cert \<equiv> wtl_cert cert f r \<top> \<bottom> step"
fixes wtl :: "'b list \<Rightarrow> 'a certificate \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
defines wtl_def: "wtl ins cert \<equiv> wtl_inst_list ins cert f r \<top> \<bottom> step"
lemma (in lbv) wti:
"wti c pc s \<equiv> merge c pc (step pc s) (c!(pc+1))"
by (simp add: wti_def mrg_def wtl_inst_def)
lemma (in lbv) wtc:
"wtc c pc s \<equiv> if c!pc = \<bottom> then wti c pc s else if s <=_r c!pc then wti c pc (c!pc) else \<top>"
by (unfold wtc_def wti_def wtl_cert_def)
lemma cert_okD1 [intro?]:
"cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<in> A"
by (unfold cert_ok_def) fast
lemma cert_okD2 [intro?]:
"cert_ok c n T B A \<Longrightarrow> c!n = B"
by (simp add: cert_ok_def)
lemma cert_okD3 [intro?]:
"cert_ok c n T B A \<Longrightarrow> B \<in> A \<Longrightarrow> pc < n \<Longrightarrow> c!Suc pc \<in> A"
by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2)
lemma cert_okD4 [intro?]:
"cert_ok c n T B A \<Longrightarrow> pc < n \<Longrightarrow> c!pc \<noteq> T"
by (simp add: cert_ok_def)
declare Let_def [simp]
section "more semilattice lemmas"
lemma (in lbv) sup_top [simp, elim]:
assumes x: "x \<in> A"
shows "x +_f \<top> = \<top>"
proof -
from top have "x +_f \<top> <=_r \<top>" ..
moreover from x have "\<top> <=_r x +_f \<top>" ..
ultimately show ?thesis ..
qed
lemma (in lbv) plusplussup_top [simp, elim]:
"set xs \<subseteq> A \<Longrightarrow> xs ++_f \<top> = \<top>"
by (induct xs) auto
lemma (in semilat) pp_ub1':
assumes S: "snd`set S \<subseteq> A"
assumes y: "y \<in> A" and ab: "(a, b) \<in> set S"
shows "b <=_r map snd [(p', t')\<in>S . p' = a] ++_f y"
proof -
from S have "\<forall>(x,y) \<in> set S. y \<in> A" by auto
with semilat y ab show ?thesis by - (rule ub1')
qed
lemma (in lbv) bottom_le [simp, intro]:
"\<bottom> <=_r x"
by (insert bot) (simp add: bottom_def)
lemma (in lbv) le_bottom [simp]:
"x <=_r \<bottom> = (x = \<bottom>)"
by (blast intro: antisym_r)
section "merge"
lemma (in lbv) merge_Nil [simp]:
"merge c pc [] x = x" by (simp add: mrg_def)
lemma (in lbv) merge_Cons [simp]:
"merge c pc (l#ls) x = merge c pc ls (if fst l=pc+1 then snd l +_f x
else if snd l <=_r (c!fst l) then x
else \<top>)"
by (simp add: mrg_def split_beta)
lemma (in lbv) merge_Err [simp]:
"snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss \<top> = \<top>"
by (induct ss) auto
lemma (in lbv) merge_not_top:
"\<And>x. snd`set ss \<subseteq> A \<Longrightarrow> merge c pc ss x \<noteq> \<top> \<Longrightarrow>
\<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc'))"
(is "\<And>x. ?set ss \<Longrightarrow> ?merge ss x \<Longrightarrow> ?P ss")
proof (induct ss)
show "?P []" by simp
next
fix x ls l
assume "?set (l#ls)" then obtain set: "snd`set ls \<subseteq> A" by simp
assume merge: "?merge (l#ls) x"
moreover
obtain pc' s' where [simp]: "l = (pc',s')" by (cases l)
ultimately
obtain x' where "?merge ls x'" by simp
assume "\<And>x. ?set ls \<Longrightarrow> ?merge ls x \<Longrightarrow> ?P ls" hence "?P ls" .
moreover
from merge set
have "pc' \<noteq> pc+1 \<longrightarrow> s' <=_r (c!pc')" by (simp split: split_if_asm)
ultimately
show "?P (l#ls)" by simp
qed
lemma (in lbv) merge_def:
shows
"\<And>x. x \<in> A \<Longrightarrow> snd`set ss \<subseteq> A \<Longrightarrow>
merge c pc ss x =
(if \<forall>(pc',s') \<in> set ss. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc' then
map snd [(p',t') \<in> ss. p'=pc+1] ++_f x
else \<top>)"
(is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?merge ss x = ?if ss x" is "\<And>x. _ \<Longrightarrow> _ \<Longrightarrow> ?P ss x")
proof (induct ss)
fix x show "?P [] x" by simp
next
fix x assume x: "x \<in> A"
fix l::"nat \<times> 'a" and ls
assume "snd`set (l#ls) \<subseteq> A"
then obtain l: "snd l \<in> A" and ls: "snd`set ls \<subseteq> A" by auto
assume "\<And>x. x \<in> A \<Longrightarrow> snd`set ls \<subseteq> A \<Longrightarrow> ?P ls x"
hence IH: "\<And>x. x \<in> A \<Longrightarrow> ?P ls x" .
obtain pc' s' where [simp]: "l = (pc',s')" by (cases l)
hence "?merge (l#ls) x = ?merge ls
(if pc'=pc+1 then s' +_f x else if s' <=_r c!pc' then x else \<top>)"
(is "?merge (l#ls) x = ?merge ls ?if'")
by simp
also have "\<dots> = ?if ls ?if'"
proof -
from l have "s' \<in> A" by simp
with x have "s' +_f x \<in> A" by simp
with x have "?if' \<in> A" by auto
hence "?P ls ?if'" by (rule IH) thus ?thesis by simp
qed
also have "\<dots> = ?if (l#ls) x"
proof (cases "\<forall>(pc', s')\<in>set (l#ls). pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'")
case True
hence "\<forall>(pc', s')\<in>set ls. pc'\<noteq>pc+1 \<longrightarrow> s' <=_r c!pc'" by auto
moreover
from True have
"map snd [(p',t')\<in>ls . p'=pc+1] ++_f ?if' =
(map snd [(p',t')\<in>l#ls . p'=pc+1] ++_f x)"
by simp
ultimately
show ?thesis using True by simp
next
case False
moreover
from ls have "set (map snd [(p', t')\<in>ls . p' = Suc pc]) \<subseteq> A" by auto
ultimately show ?thesis by auto
qed
finally show "?P (l#ls) x" .
qed
lemma (in lbv) merge_not_top_s:
assumes x: "x \<in> A" and ss: "snd`set ss \<subseteq> A"
assumes m: "merge c pc ss x \<noteq> \<top>"
shows "merge c pc ss x = (map snd [(p',t') \<in> ss. p'=pc+1] ++_f x)"
proof -
from ss m have "\<forall>(pc',s') \<in> set ss. (pc' \<noteq> pc+1 \<longrightarrow> s' <=_r c!pc')"
by (rule merge_not_top)
with x ss m show ?thesis by - (drule merge_def, auto split: split_if_asm)
qed
section "wtl-inst-list"
lemmas [iff] = not_Err_eq
lemma (in lbv) wtl_Nil [simp]: "wtl [] c pc s = s"
by (simp add: wtl_def)
lemma (in lbv) wtl_Cons [simp]:
"wtl (i#is) c pc s =
(let s' = wtc c pc s in if s' = \<top> \<or> s = \<top> then \<top> else wtl is c (pc+1) s')"
by (simp add: wtl_def wtc_def)
lemma (in lbv) wtl_Cons_not_top:
"wtl (i#is) c pc s \<noteq> \<top> =
(wtc c pc s \<noteq> \<top> \<and> s \<noteq> T \<and> wtl is c (pc+1) (wtc c pc s) \<noteq> \<top>)"
by (auto simp del: split_paired_Ex)
lemma (in lbv) wtl_top [simp]: "wtl ls c pc \<top> = \<top>"
by (cases ls) auto
lemma (in lbv) wtl_not_top:
"wtl ls c pc s \<noteq> \<top> \<Longrightarrow> s \<noteq> \<top>"
by (cases "s=\<top>") auto
lemma (in lbv) wtl_append [simp]:
"\<And>pc s. wtl (a@b) c pc s = wtl b c (pc+length a) (wtl a c pc s)"
by (induct a) auto
lemma (in lbv) wtl_take:
"wtl is c pc s \<noteq> \<top> \<Longrightarrow> wtl (take pc' is) c pc s \<noteq> \<top>"
(is "?wtl is \<noteq> _ \<Longrightarrow> _")
proof -
assume "?wtl is \<noteq> \<top>"
hence "?wtl (take pc' is @ drop pc' is) \<noteq> \<top>" by simp
thus ?thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id)
qed
lemma take_Suc:
"\<forall>n. n < length l \<longrightarrow> take (Suc n) l = (take n l)@[l!n]" (is "?P l")
proof (induct l)
show "?P []" by simp
next
fix x xs assume IH: "?P xs"
show "?P (x#xs)"
proof (intro strip)
fix n assume "n < length (x#xs)"
with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]"
by (cases n, auto)
qed
qed
lemma (in lbv) wtl_Suc:
assumes suc: "pc+1 < length is"
assumes wtl: "wtl (take pc is) c 0 s \<noteq> \<top>"
shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)"
proof -
from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc)
with suc wtl show ?thesis by (simp add: min_def)
qed
lemma (in lbv) wtl_all:
assumes all: "wtl is c 0 s \<noteq> \<top>" (is "?wtl is \<noteq> _")
assumes pc: "pc < length is"
shows "wtc c pc (wtl (take pc is) c 0 s) \<noteq> \<top>"
proof -
from pc have "0 < length (drop pc is)" by simp
then obtain i r where Cons: "drop pc is = i#r"
by (auto simp add: neq_Nil_conv simp del: length_drop drop_eq_Nil)
hence "i#r = drop pc is" ..
with all have take: "?wtl (take pc is@i#r) \<noteq> \<top>" by simp
from pc have "is!pc = drop pc is ! 0" by simp
with Cons have "is!pc = i" by simp
with take pc show ?thesis by (auto simp add: min_def split: split_if_asm)
qed
section "preserves-type"
lemma (in lbv) merge_pres:
assumes s0: "snd`set ss \<subseteq> A" and x: "x \<in> A"
shows "merge c pc ss x \<in> A"
proof -
from s0 have "set (map snd [(p', t')\<in>ss . p'=pc+1]) \<subseteq> A" by auto
with x have "(map snd [(p', t')\<in>ss . p'=pc+1] ++_f x) \<in> A"
by (auto intro!: plusplus_closed)
with s0 x show ?thesis by (simp add: merge_def T_A)
qed
lemma pres_typeD2:
"pres_type step n A \<Longrightarrow> s \<in> A \<Longrightarrow> p < n \<Longrightarrow> snd`set (step p s) \<subseteq> A"
by auto (drule pres_typeD)
lemma (in lbv) wti_pres [intro?]:
assumes pres: "pres_type step n A"
assumes cert: "c!(pc+1) \<in> A"
assumes s_pc: "s \<in> A" "pc < n"
shows "wti c pc s \<in> A"
proof -
from pres s_pc have "snd`set (step pc s) \<subseteq> A" by (rule pres_typeD2)
with cert show ?thesis by (simp add: wti merge_pres)
qed
lemma (in lbv) wtc_pres:
assumes "pres_type step n A"
assumes "c!pc \<in> A" and "c!(pc+1) \<in> A"
assumes "s \<in> A" and "pc < n"
shows "wtc c pc s \<in> A"
proof -
have "wti c pc s \<in> A" ..
moreover have "wti c pc (c!pc) \<in> A" ..
ultimately show ?thesis using T_A by (simp add: wtc)
qed
lemma (in lbv) wtl_pres:
assumes pres: "pres_type step (length is) A"
assumes cert: "cert_ok c (length is) \<top> \<bottom> A"
assumes s: "s \<in> A"
assumes all: "wtl is c 0 s \<noteq> \<top>"
shows "pc < length is \<Longrightarrow> wtl (take pc is) c 0 s \<in> A"
(is "?len pc \<Longrightarrow> ?wtl pc \<in> A")
proof (induct pc)
from s show "?wtl 0 \<in> A" by simp
next
fix n assume "Suc n < length is"
then obtain n: "n < length is" by simp
assume "n < length is \<Longrightarrow> ?wtl n \<in> A"
hence "?wtl n \<in> A" .
moreover
from cert have "c!n \<in> A" by (rule cert_okD1)
moreover
have n1: "n+1 < length is" by simp
with cert have "c!(n+1) \<in> A" by (rule cert_okD1)
ultimately
have "wtc c n (?wtl n) \<in> A" by - (rule wtc_pres)
also
from all n have "?wtl n \<noteq> \<top>" by - (rule wtl_take)
with n1 have "wtc c n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric])
finally show "?wtl (Suc n) \<in> A" by simp
qed
end