(* Title: Pure/library.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Author: Markus Wenzel, TU Muenchen
Basic library: functions, pairs, booleans, lists, integers,
strings, lists as sets, orders, current directory, misc.
See also General/basics.ML for the most fundamental concepts.
*)
infixr 0 |||
infix 2 ?
infix 3 o oo ooo oooo
infix 4 ~~ upto downto
infix orf andf
signature BASIC_LIBRARY =
sig
(*functions*)
val undefined: 'a -> 'b
val I: 'a -> 'a
val K: 'a -> 'b -> 'a
val curry: ('a * 'b -> 'c) -> 'a -> 'b -> 'c
val uncurry: ('a -> 'b -> 'c) -> 'a * 'b -> 'c
val ? : bool * ('a -> 'a) -> 'a -> 'a
val oo: ('a -> 'b) * ('c -> 'd -> 'a) -> 'c -> 'd -> 'b
val ooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'a) -> 'c -> 'd -> 'e -> 'b
val oooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'f -> 'a) -> 'c -> 'd -> 'e -> 'f -> 'b
val funpow: int -> ('a -> 'a) -> 'a -> 'a
val funpow_yield: int -> ('a -> 'b * 'a) -> 'a -> 'b list * 'a
(*pairs*)
val pair: 'a -> 'b -> 'a * 'b
val rpair: 'a -> 'b -> 'b * 'a
val fst: 'a * 'b -> 'a
val snd: 'a * 'b -> 'b
val eq_fst: ('a * 'c -> bool) -> ('a * 'b) * ('c * 'd) -> bool
val eq_snd: ('b * 'd -> bool) -> ('a * 'b) * ('c * 'd) -> bool
val eq_pair: ('a * 'c -> bool) -> ('b * 'd -> bool) -> ('a * 'b) * ('c * 'd) -> bool
val swap: 'a * 'b -> 'b * 'a
val apfst: ('a -> 'b) -> 'a * 'c -> 'b * 'c
val apsnd: ('a -> 'b) -> 'c * 'a -> 'c * 'b
val apply2: ('a -> 'b) -> 'a * 'a -> 'b * 'b
(*booleans*)
val equal: ''a -> ''a -> bool
val not_equal: ''a -> ''a -> bool
val orf: ('a -> bool) * ('a -> bool) -> 'a -> bool
val andf: ('a -> bool) * ('a -> bool) -> 'a -> bool
val exists: ('a -> bool) -> 'a list -> bool
val forall: ('a -> bool) -> 'a list -> bool
(*lists*)
val build: ('a list -> 'a list) -> 'a list
val build_rev: ('a list -> 'a list) -> 'a list
val single: 'a -> 'a list
val the_single: 'a list -> 'a
val singleton: ('a list -> 'b list) -> 'a -> 'b
val yield_singleton: ('a list -> 'c -> 'b list * 'c) -> 'a -> 'c -> 'b * 'c
val perhaps_apply: ('a -> 'a option) list -> 'a -> 'a option
val perhaps_loop: ('a -> 'a option) -> 'a -> 'a option
val foldl1: ('a * 'a -> 'a) -> 'a list -> 'a
val foldr1: ('a * 'a -> 'a) -> 'a list -> 'a
val eq_list: ('a * 'a -> bool) -> 'a list * 'a list -> bool
val maps: ('a -> 'b list) -> 'a list -> 'b list
val filter: ('a -> bool) -> 'a list -> 'a list
val filter_out: ('a -> bool) -> 'a list -> 'a list
val map_filter: ('a -> 'b option) -> 'a list -> 'b list
val take: int -> 'a list -> 'a list
val drop: int -> 'a list -> 'a list
val chop: int -> 'a list -> 'a list * 'a list
val chop_groups: int -> 'a list -> 'a list list
val nth: 'a list -> int -> 'a
val nth_list: 'a list list -> int -> 'a list
val nth_map: int -> ('a -> 'a) -> 'a list -> 'a list
val nth_drop: int -> 'a list -> 'a list
val map_index: (int * 'a -> 'b) -> 'a list -> 'b list
val fold_index: (int * 'a -> 'b -> 'b) -> 'a list -> 'b -> 'b
val map_range: (int -> 'a) -> int -> 'a list
val fold_range: (int -> 'a -> 'a) -> int -> 'a -> 'a
val split_last: 'a list -> 'a list * 'a
val find_first: ('a -> bool) -> 'a list -> 'a option
val find_index: ('a -> bool) -> 'a list -> int
val get_first: ('a -> 'b option) -> 'a list -> 'b option
val get_index: ('a -> 'b option) -> 'a list -> (int * 'b) option
val flat: 'a list list -> 'a list
val unflat: 'a list list -> 'b list -> 'b list list
val grouped: int -> (('a list -> 'b list) -> 'c list list -> 'd list list) ->
('a -> 'b) -> 'c list -> 'd list
val burrow: ('a list -> 'b list) -> 'a list list -> 'b list list
val burrow_options: ('a list -> 'b list) -> 'a option list -> 'b option list
val fold_burrow: ('a list -> 'c -> 'b list * 'd) -> 'a list list -> 'c -> 'b list list * 'd
val separate: 'a -> 'a list -> 'a list
val surround: 'a -> 'a list -> 'a list
val replicate: int -> 'a -> 'a list
val map_product: ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
val fold_product: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
val map2: ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
val fold2: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
val map_split: ('a -> 'b * 'c) -> 'a list -> 'b list * 'c list
val zip_options: 'a list -> 'b option list -> ('a * 'b) list
val ~~ : 'a list * 'b list -> ('a * 'b) list
val split_list: ('a * 'b) list -> 'a list * 'b list
val burrow_fst: ('a list -> 'b list) -> ('a * 'c) list -> ('b * 'c) list
val take_prefix: ('a -> bool) -> 'a list -> 'a list
val drop_prefix: ('a -> bool) -> 'a list -> 'a list
val chop_prefix: ('a -> bool) -> 'a list -> 'a list * 'a list
val take_suffix: ('a -> bool) -> 'a list -> 'a list
val drop_suffix: ('a -> bool) -> 'a list -> 'a list
val chop_suffix: ('a -> bool) -> 'a list -> 'a list * 'a list
val is_prefix: ('a * 'a -> bool) -> 'a list -> 'a list -> bool
val chop_common_prefix: ('a * 'b -> bool) -> 'a list * 'b list -> 'a list * ('a list * 'b list)
val prefixes1: 'a list -> 'a list list
val prefixes: 'a list -> 'a list list
val suffixes1: 'a list -> 'a list list
val suffixes: 'a list -> 'a list list
val trim: ('a -> bool) -> 'a list -> 'a list
(*integers*)
val upto: int * int -> int list
val downto: int * int -> int list
val hex_digit: int -> string
val radixpand: int * int -> int list
val radixstring: int * string * int -> string
val string_of_int: int -> string
val signed_string_of_int: int -> string
val string_of_indexname: string * int -> string
val read_radix_int: int -> string list -> int * string list
val read_int: string list -> int * string list
val oct_char: string -> string
(*strings*)
val nth_string: string -> int -> string
val fold_string: (string -> 'a -> 'a) -> string -> 'a -> 'a
val exists_string: (string -> bool) -> string -> bool
val forall_string: (string -> bool) -> string -> bool
val member_string: string -> string -> bool
val first_field: string -> string -> (string * string) option
val enclose: string -> string -> string -> string
val unenclose: string -> string
val quote: string -> string
val cartouche: string -> string
val space_implode: string -> string list -> string
val commas: string list -> string
val commas_quote: string list -> string
val cat_lines: string list -> string
val space_explode: string -> string -> string list
val split_lines: string -> string list
val plain_words: string -> string
val prefix_lines: string -> string -> string
val prefix: string -> string -> string
val suffix: string -> string -> string
val unprefix: string -> string -> string
val unsuffix: string -> string -> string
val trim_line: string -> string
val trim_split_lines: string -> string list
val normalize_lines: string -> string
val replicate_string: int -> string -> string
val translate_string: (string -> string) -> string -> string
val encode_lines: string -> string
val decode_lines: string -> string
val align_right: string -> int -> string -> string
val match_string: string -> string -> bool
(*reals*)
val string_of_real: real -> string
val signed_string_of_real: real -> string
(*lists as sets -- see also Pure/General/ord_list.ML*)
val member: ('b * 'a -> bool) -> 'a list -> 'b -> bool
val insert: ('a * 'a -> bool) -> 'a -> 'a list -> 'a list
val remove: ('b * 'a -> bool) -> 'b -> 'a list -> 'a list
val update: ('a * 'a -> bool) -> 'a -> 'a list -> 'a list
val union: ('a * 'a -> bool) -> 'a list -> 'a list -> 'a list
val subtract: ('b * 'a -> bool) -> 'b list -> 'a list -> 'a list
val inter: ('a * 'b -> bool) -> 'b list -> 'a list -> 'a list
val merge: ('a * 'a -> bool) -> 'a list * 'a list -> 'a list
val subset: ('a * 'b -> bool) -> 'a list * 'b list -> bool
val eq_set: ('a * 'a -> bool) -> 'a list * 'a list -> bool
val distinct: ('a * 'a -> bool) -> 'a list -> 'a list
val duplicates: ('a * 'a -> bool) -> 'a list -> 'a list
val has_duplicates: ('a * 'a -> bool) -> 'a list -> bool
val map_transpose: ('a list -> 'b) -> 'a list list -> 'b list
(*lists as multisets*)
val remove1: ('b * 'a -> bool) -> 'b -> 'a list -> 'a list
val combine: ('a * 'a -> bool) -> 'a list -> 'a list -> 'a list
val submultiset: ('a * 'b -> bool) -> 'a list * 'b list -> bool
(*orders*)
type 'a ord = 'a * 'a -> order
val is_equal: order -> bool
val is_less: order -> bool
val is_less_equal: order -> bool
val is_greater: order -> bool
val is_greater_equal: order -> bool
val rev_order: order -> order
val make_ord: ('a * 'a -> bool) -> 'a ord
val pointer_eq_ord: ('a * 'a -> order) -> 'a * 'a -> order
val bool_ord: bool ord
val int_ord: int ord
val string_ord: string ord
val size_ord: string ord
val fast_string_ord: string ord
val option_ord: ('a * 'b -> order) -> 'a option * 'b option -> order
val ||| : ('a -> order) * ('a -> order) -> 'a -> order
val prod_ord: ('a * 'b -> order) -> ('c * 'd -> order) -> ('a * 'c) * ('b * 'd) -> order
val dict_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
val length_ord: 'a list * 'b list -> order
val list_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
val sort: 'a ord -> 'a list -> 'a list
val sort_distinct: 'a ord -> 'a list -> 'a list
val sort_strings: string list -> string list
val sort_by: ('a -> string) -> 'a list -> 'a list
val tag_list: int -> 'a list -> (int * 'a) list
val untag_list: (int * 'a) list -> 'a list
val order_list: (int * 'a) list -> 'a list
(*misc*)
val divide_and_conquer: ('a -> 'a list * ('b list -> 'b)) -> 'a -> 'b
val divide_and_conquer': ('a -> 'b -> ('a list * ('c list * 'b -> 'c * 'b)) * 'b) ->
'a -> 'b -> 'c * 'b
val partition_eq: ('a * 'a -> bool) -> 'a list -> 'a list list
val partition_list: (int -> 'a -> bool) -> int -> int -> 'a list -> 'a list list
type serial = int
val serial: unit -> serial
val serial_string: unit -> string
eqtype stamp
val stamp: unit -> stamp
structure Any: sig type T = exn end
val getenv: string -> string
val getenv_strict: string -> string
end;
signature LIBRARY =
sig
include BASIC_LIBRARY
val foldl: ('a * 'b -> 'a) -> 'a * 'b list -> 'a
val foldr: ('a * 'b -> 'b) -> 'a list * 'b -> 'b
end;
structure Library: LIBRARY =
struct
(* functions *)
fun undefined _ = raise Match;
fun I x = x;
fun K x = fn _ => x;
fun curry f x y = f (x, y);
fun uncurry f (x, y) = f x y;
(*conditional application*)
fun b ? f = fn x => if b then f x else x;
(*composition with multiple args*)
fun (f oo g) x y = f (g x y);
fun (f ooo g) x y z = f (g x y z);
fun (f oooo g) x y z w = f (g x y z w);
(*function exponentiation: f (... (f x) ...) with n applications of f*)
fun funpow (0: int) _ x = x
| funpow n f x = funpow (n - 1) f (f x);
fun funpow_yield (0 : int) _ x = ([], x)
| funpow_yield n f x = x |> f ||>> funpow_yield (n - 1) f |>> op ::;
(* pairs *)
fun pair x y = (x, y);
fun rpair x y = (y, x);
fun fst (x, y) = x;
fun snd (x, y) = y;
fun eq_fst eq ((x1, _), (x2, _)) = eq (x1, x2);
fun eq_snd eq ((_, y1), (_, y2)) = eq (y1, y2);
fun eq_pair eqx eqy ((x1, y1), (x2, y2)) = eqx (x1, x2) andalso eqy (y1, y2);
fun swap (x, y) = (y, x);
fun apfst f (x, y) = (f x, y);
fun apsnd f (x, y) = (x, f y);
fun apply2 f (x, y) = (f x, f y);
(* booleans *)
(*polymorphic equality*)
fun equal x y = x = y;
fun not_equal x y = x <> y;
(*combining predicates*)
fun p orf q = fn x => p x orelse q x;
fun p andf q = fn x => p x andalso q x;
val exists = List.exists;
val forall = List.all;
(** lists **)
fun build (f: 'a list -> 'a list) = f [];
fun build_rev f = build f |> rev;
fun single x = [x];
fun the_single [x] = x
| the_single _ = raise List.Empty;
fun singleton f x = the_single (f [x]);
fun yield_singleton f x = f [x] #>> the_single;
fun perhaps_apply funs arg =
let
fun app [] res = res
| app (f :: fs) (changed, x) =
(case f x of
NONE => app fs (changed, x)
| SOME x' => app fs (true, x'));
in (case app funs (false, arg) of (false, _) => NONE | (true, arg') => SOME arg') end;
fun perhaps_loop f arg =
let
fun loop (changed, x) =
(case f x of
NONE => (changed, x)
| SOME x' => loop (true, x'));
in (case loop (false, arg) of (false, _) => NONE | (true, arg') => SOME arg') end;
(* fold -- old versions *)
(*the following versions of fold are designed to fit nicely with infixes*)
(* (op @) (e, [x1, ..., xn]) ===> ((e @ x1) @ x2) ... @ xn
for operators that associate to the left (TAIL RECURSIVE)*)
fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a =
let fun itl (e, []) = e
| itl (e, a::l) = itl (f(e, a), l)
in itl end;
(* (op @) ([x1, ..., xn], e) ===> x1 @ (x2 ... @ (xn @ e))
for operators that associate to the right (not tail recursive)*)
fun foldr f (l, e) =
let fun itr [] = e
| itr (a::l) = f(a, itr l)
in itr l end;
(* (op @) [x1, ..., xn] ===> ((x1 @ x2) @ x3) ... @ xn
for operators that associate to the left (TAIL RECURSIVE)*)
fun foldl1 f [] = raise List.Empty
| foldl1 f (x :: xs) = foldl f (x, xs);
(* (op @) [x1, ..., xn] ===> x1 @ (x2 ... @ (x[n-1] @ xn))
for n > 0, operators that associate to the right (not tail recursive)*)
fun foldr1 f [] = raise List.Empty
| foldr1 f l =
let fun itr [x] = x
| itr (x::l) = f(x, itr l)
in itr l end;
(* basic list functions *)
fun eq_list eq (list1, list2) =
pointer_eq (list1, list2) orelse
let
fun eq_lst (x :: xs, y :: ys) = eq (x, y) andalso eq_lst (xs, ys)
| eq_lst _ = true;
in length list1 = length list2 andalso eq_lst (list1, list2) end;
fun maps f [] = []
| maps f (x :: xs) = f x @ maps f xs;
val filter = List.filter;
fun filter_out f = filter (not o f);
val map_filter = List.mapPartial;
fun take (0: int) xs = []
| take _ [] = []
| take n (x :: xs) = x :: take (n - 1) xs;
fun drop (0: int) xs = xs
| drop _ [] = []
| drop n (x :: xs) = drop (n - 1) xs;
fun chop (0: int) xs = ([], xs)
| chop _ [] = ([], [])
| chop n (x :: xs) = chop (n - 1) xs |>> cons x;
fun chop_groups n list =
(case chop (Int.max (n, 1)) list of
([], _) => []
| (g, rest) => g :: chop_groups n rest);
(*return nth element of a list, where 0 designates the first element;
raise Subscript if list too short*)
fun nth xs i = List.nth (xs, i);
fun nth_list xss i = nth xss i handle General.Subscript => [];
fun nth_map 0 f (x :: xs) = f x :: xs
| nth_map n f (x :: xs) = x :: nth_map (n - 1) f xs
| nth_map (_: int) _ [] = raise Subscript;
fun nth_drop n xs =
List.take (xs, n) @ List.drop (xs, n + 1);
fun map_index f =
let
fun map_aux (_: int) [] = []
| map_aux i (x :: xs) = f (i, x) :: map_aux (i + 1) xs
in map_aux 0 end;
fun fold_index f =
let
fun fold_aux (_: int) [] y = y
| fold_aux i (x :: xs) y = fold_aux (i + 1) xs (f (i, x) y)
in fold_aux 0 end;
fun map_range f i =
let
fun map_aux (k: int) =
if k < i then f k :: map_aux (k + 1) else []
in map_aux 0 end;
fun fold_range f i =
let
fun fold_aux (k: int) y =
if k < i then fold_aux (k + 1) (f k y) else y
in fold_aux 0 end;
(*rear decomposition*)
fun split_last [] = raise List.Empty
| split_last [x] = ([], x)
| split_last (x :: xs) = apfst (cons x) (split_last xs);
(*find first element satisfying predicate*)
val find_first = List.find;
(*find position of first element satisfying a predicate*)
fun find_index pred =
let fun find (_: int) [] = ~1
| find n (x :: xs) = if pred x then n else find (n + 1) xs;
in find 0 end;
(*get first element by lookup function*)
fun get_first _ [] = NONE
| get_first f (x :: xs) =
(case f x of
NONE => get_first f xs
| some => some);
fun get_index f =
let
fun get_aux (_: int) [] = NONE
| get_aux i (x :: xs) =
(case f x of
NONE => get_aux (i + 1) xs
| SOME y => SOME (i, y))
in get_aux 0 end;
val flat = List.concat;
fun unflat (xs :: xss) ys =
let val (ps, qs) = chop (length xs) ys
in ps :: unflat xss qs end
| unflat [] [] = []
| unflat _ _ = raise ListPair.UnequalLengths;
fun grouped n comb f = chop_groups n #> comb (map f) #> flat;
fun burrow f xss = unflat xss (f (flat xss));
fun burrow_options f os = map (try hd) (burrow f (map the_list os));
fun fold_burrow f xss s =
apfst (unflat xss) (f (flat xss) s);
(*separate s [x1, x2, ..., xn] ===> [x1, s, x2, s, ..., s, xn]*)
fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs
| separate _ xs = xs;
fun surround s (x :: xs) = s :: x :: surround s xs
| surround s [] = [s];
(*make the list [x, x, ..., x] of length n*)
fun replicate (n: int) x =
let fun rep (0, xs) = xs
| rep (n, xs) = rep (n - 1, x :: xs)
in
if n < 0 then raise Subscript
else rep (n, [])
end;
(* direct product *)
fun map_product f _ [] = []
| map_product f [] _ = []
| map_product f (x :: xs) ys = map (f x) ys @ map_product f xs ys;
fun fold_product f _ [] z = z
| fold_product f [] _ z = z
| fold_product f (x :: xs) ys z = z |> fold (f x) ys |> fold_product f xs ys;
(* lists of pairs *)
fun map2 _ [] [] = []
| map2 f (x :: xs) (y :: ys) = f x y :: map2 f xs ys
| map2 _ _ _ = raise ListPair.UnequalLengths;
fun fold2 _ [] [] z = z
| fold2 f (x :: xs) (y :: ys) z = fold2 f xs ys (f x y z)
| fold2 _ _ _ _ = raise ListPair.UnequalLengths;
fun map_split _ [] = ([], [])
| map_split f (x :: xs) =
let
val (y, w) = f x;
val (ys, ws) = map_split f xs;
in (y :: ys, w :: ws) end;
fun zip_options (x :: xs) (SOME y :: ys) = (x, y) :: zip_options xs ys
| zip_options (_ :: xs) (NONE :: ys) = zip_options xs ys
| zip_options _ [] = []
| zip_options [] _ = raise ListPair.UnequalLengths;
(*combine two lists forming a list of pairs:
[x1, ..., xn] ~~ [y1, ..., yn] ===> [(x1, y1), ..., (xn, yn)]*)
fun [] ~~ [] = []
| (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys)
| _ ~~ _ = raise ListPair.UnequalLengths;
(*inverse of ~~; the old 'split':
[(x1, y1), ..., (xn, yn)] ===> ([x1, ..., xn], [y1, ..., yn])*)
val split_list = ListPair.unzip;
fun burrow_fst f xs = split_list xs |>> f |> op ~~;
(* take, drop, chop, trim according to predicate *)
fun take_prefix pred list =
let
fun take res (x :: xs) = if pred x then take (x :: res) xs else rev res
| take res [] = rev res;
in take [] list end;
fun drop_prefix pred list =
let
fun drop (x :: xs) = if pred x then drop xs else x :: xs
| drop [] = [];
in drop list end;
fun chop_prefix pred list =
let
val prfx = take_prefix pred list;
val sffx = drop (length prfx) list;
in (prfx, sffx) end;
fun take_suffix pred list =
let
fun take res (x :: xs) = if pred x then take (x :: res) xs else res
| take res [] = res;
in take [] (rev list) end;
fun drop_suffix pred list =
let
fun drop (x :: xs) = if pred x then drop xs else rev (x :: xs)
| drop [] = [];
in drop (rev list) end;
fun chop_suffix pred list =
let
val prfx = drop_suffix pred list;
val sffx = drop (length prfx) list;
in (prfx, sffx) end;
fun trim pred = drop_prefix pred #> drop_suffix pred;
(* prefixes, suffixes *)
fun is_prefix _ [] _ = true
| is_prefix eq (x :: xs) (y :: ys) = eq (x, y) andalso is_prefix eq xs ys
| is_prefix eq _ _ = false;
fun chop_common_prefix eq ([], ys) = ([], ([], ys))
| chop_common_prefix eq (xs, []) = ([], (xs, []))
| chop_common_prefix eq (xs as x :: xs', ys as y :: ys') =
if eq (x, y) then
let val (ps', xys'') = chop_common_prefix eq (xs', ys')
in (x :: ps', xys'') end
else ([], (xs, ys));
fun prefixes1 [] = []
| prefixes1 (x :: xs) = map (cons x) ([] :: prefixes1 xs);
fun prefixes xs = [] :: prefixes1 xs;
fun suffixes1 xs = map rev (prefixes1 (rev xs));
fun suffixes xs = [] :: suffixes1 xs;
(** integers **)
(* lists of integers *)
(*make the list [from, from + 1, ..., to]*)
fun ((i: int) upto j) =
if i > j then [] else i :: (i + 1 upto j);
(*make the list [from, from - 1, ..., to]*)
fun ((i: int) downto j) =
if i < j then [] else i :: (i - 1 downto j);
(* convert integers to strings *)
(*hexadecimal*)
fun hex_digit i =
if i < 10 then chr (Char.ord #"0" + i) else chr (Char.ord #"a" + i - 10);
(*expand the number in the given base;
example: radixpand (2, 8) gives [1, 0, 0, 0]*)
fun radixpand (base, num) : int list =
let
fun radix (n, tail) =
if n < base then n :: tail
else radix (n div base, (n mod base) :: tail)
in radix (num, []) end;
(*expands a number into a string of characters starting from "zerochar";
example: radixstring (2, "0", 8) gives "1000"*)
fun radixstring (base, zerochar, num) =
let val offset = ord zerochar;
fun chrof n = chr (offset + n)
in implode (map chrof (radixpand (base, num))) end;
local
val zero = Char.ord #"0";
val small_int = 10000: int;
val small_int_table = Vector.tabulate (small_int, Int.toString);
in
fun string_of_int i =
if i < 0 then Int.toString i
else if i < 10 then chr (zero + i)
else if i < small_int then Vector.sub (small_int_table, i)
else Int.toString i;
end;
fun signed_string_of_int i =
if i < 0 then "-" ^ string_of_int (~ i) else string_of_int i;
fun string_of_indexname (a, 0) = a
| string_of_indexname (a, i) = a ^ "_" ^ string_of_int i;
(* read integers *)
fun read_radix_int radix cs =
let
val zero = Char.ord #"0";
val limit = zero + radix;
fun scan (num, []) = (num, [])
| scan (num, c :: cs) =
if zero <= ord c andalso ord c < limit then
scan (radix * num + (ord c - zero), cs)
else (num, c :: cs);
in scan (0, cs) end;
val read_int = read_radix_int 10;
fun oct_char s = chr (#1 (read_radix_int 8 (raw_explode s)));
(** strings **)
(* functions tuned for strings, avoiding explode *)
fun nth_string str i =
(case try String.substring (str, i, 1) of
SOME s => s
| NONE => raise Subscript);
fun fold_string f str x0 =
let
val n = size str;
fun iter (x, i) =
if i < n then iter (f (String.substring (str, i, 1)) x, i + 1) else x;
in iter (x0, 0) end;
fun exists_string pred str =
let
val n = size str;
fun ex i = i < n andalso (pred (String.substring (str, i, 1)) orelse ex (i + 1));
in ex 0 end;
fun forall_string pred = not o exists_string (not o pred);
fun member_string str s = exists_string (fn s' => s = s') str;
fun first_field sep str =
let
val n = size sep;
val len = size str;
fun find i =
if i + n > len then NONE
else if String.substring (str, i, n) = sep then SOME i
else find (i + 1);
in
(case find 0 of
NONE => NONE
| SOME i => SOME (String.substring (str, 0, i), String.extract (str, i + n, NONE)))
end;
(*enclose in brackets*)
fun enclose lpar rpar str = lpar ^ str ^ rpar;
fun unenclose str = String.substring (str, 1, size str - 2);
(*simple quoting (does not escape special chars)*)
val quote = enclose "\"" "\"";
val cartouche = enclose "\<open>" "\<close>";
val space_implode = String.concatWith;
val commas = space_implode ", ";
val commas_quote = commas o map quote;
val cat_lines = space_implode "\n";
(*space_explode "." "h.e..l.lo" = ["h", "e", "", "l", "lo"]*)
fun space_explode _ "" = []
| space_explode sep s = String.fields (fn c => str c = sep) s;
val split_lines = space_explode "\n";
fun plain_words s = space_explode "_" s |> space_implode " ";
fun prefix_lines "" txt = txt
| prefix_lines prfx txt = txt |> split_lines |> map (fn s => prfx ^ s) |> cat_lines;
fun prefix prfx s = prfx ^ s;
fun suffix sffx s = s ^ sffx;
fun unprefix prfx s =
if String.isPrefix prfx s then String.substring (s, size prfx, size s - size prfx)
else raise Fail "unprefix";
fun unsuffix sffx s =
if String.isSuffix sffx s then String.substring (s, 0, size s - size sffx)
else raise Fail "unsuffix";
fun trim_line s =
if String.isSuffix "\r\n" s
then String.substring (s, 0, size s - 2)
else if String.isSuffix "\r" s orelse String.isSuffix "\n" s
then String.substring (s, 0, size s - 1)
else s;
val trim_split_lines = trim_line #> split_lines #> map trim_line;
fun normalize_lines str =
if exists_string (fn s => s = "\r") str then
split_lines str |> map trim_line |> cat_lines
else str;
fun replicate_string (0: int) _ = ""
| replicate_string 1 a = a
| replicate_string k a =
if k mod 2 = 0 then replicate_string (k div 2) (a ^ a)
else replicate_string (k div 2) (a ^ a) ^ a;
fun translate_string f = String.translate (f o String.str);
val encode_lines = translate_string (fn "\n" => "\v" | c => c);
val decode_lines = translate_string (fn "\v" => "\n" | c => c);
fun align_right c k s =
let
val _ = if size c <> 1 orelse size s > k
then raise Fail "align_right" else ()
in replicate_string (k - size s) c ^ s end;
(*crude matching of str against simple glob pat*)
fun match_string pat str =
let
fun match [] _ = true
| match (p :: ps) s =
size p <= size s andalso
(case try (unprefix p) s of
SOME s' => match ps s'
| NONE => match (p :: ps) (String.substring (s, 1, size s - 1)));
in match (space_explode "*" pat) str end;
(** reals **)
val string_of_real = Real.fmt (StringCvt.GEN NONE);
fun signed_string_of_real x =
if x < 0.0 then "-" ^ string_of_real (~ x) else string_of_real x;
(** lists as sets -- see also Pure/General/ord_list.ML **)
(* canonical operations *)
fun member eq list x =
let
fun memb [] = false
| memb (y :: ys) = eq (x, y) orelse memb ys;
in memb list end;
fun insert eq x xs = if member eq xs x then xs else x :: xs;
fun remove eq x xs = if member eq xs x then filter_out (fn y => eq (x, y)) xs else xs;
fun update eq x xs = cons x (remove eq x xs);
fun inter eq xs = filter (member eq xs);
fun union eq = fold (insert eq);
fun subtract eq = fold (remove eq);
fun merge eq (xs, ys) =
if pointer_eq (xs, ys) then xs
else if null xs then ys
else fold_rev (insert eq) ys xs;
(* subset and set equality *)
fun subset eq (xs, ys) = forall (member eq ys) xs;
fun eq_set eq (xs, ys) =
eq_list eq (xs, ys) orelse
(subset eq (xs, ys) andalso subset (eq o swap) (ys, xs));
(*makes a list of the distinct members of the input; preserves order, takes
first of equal elements*)
fun distinct eq lst =
let
fun dist (rev_seen, []) = rev rev_seen
| dist (rev_seen, x :: xs) =
if member eq rev_seen x then dist (rev_seen, xs)
else dist (x :: rev_seen, xs);
in dist ([], lst) end;
(*returns a list containing all repeated elements exactly once; preserves
order, takes first of equal elements*)
fun duplicates eq lst =
let
fun dups (rev_dups, []) = rev rev_dups
| dups (rev_dups, x :: xs) =
if member eq rev_dups x orelse not (member eq xs x) then
dups (rev_dups, xs)
else dups (x :: rev_dups, xs);
in dups ([], lst) end;
fun has_duplicates eq =
let
fun dups [] = false
| dups (x :: xs) = member eq xs x orelse dups xs;
in dups end;
(* matrices *)
fun map_transpose f xss =
let
val n =
(case distinct (op =) (map length xss) of
[] => 0
| [n] => n
| _ => raise ListPair.UnequalLengths);
in map_range (fn m => f (map (fn xs => nth xs m) xss)) n end;
(** lists as multisets **)
fun remove1 eq x [] = []
| remove1 eq x (y :: ys) = if eq (x, y) then ys else y :: remove1 eq x ys;
fun combine eq xs ys = fold (remove1 eq) ys xs @ ys;
fun submultiset _ ([], _) = true
| submultiset eq (x :: xs, ys) = member eq ys x andalso submultiset eq (xs, remove1 eq x ys);
(** orders **)
type 'a ord = 'a * 'a -> order;
fun is_equal ord = ord = EQUAL;
fun is_less ord = ord = LESS;
fun is_less_equal ord = ord = LESS orelse ord = EQUAL;
fun is_greater ord = ord = GREATER;
fun is_greater_equal ord = ord = GREATER orelse ord = EQUAL;
fun rev_order LESS = GREATER
| rev_order EQUAL = EQUAL
| rev_order GREATER = LESS;
(*compose orders*)
fun (a_ord ||| b_ord) p = (case a_ord p of EQUAL => b_ord p | ord => ord);
(*assume rel is a linear strict order*)
fun make_ord rel (x, y) =
if rel (x, y) then LESS
else if rel (y, x) then GREATER
else EQUAL;
fun pointer_eq_ord ord (x, y) =
if pointer_eq (x, y) then EQUAL else ord (x, y);
fun bool_ord (false, true) = LESS
| bool_ord (true, false) = GREATER
| bool_ord _ = EQUAL;
val int_ord = Int.compare;
val string_ord = String.compare;
val size_ord = int_ord o apply2 size;
val fast_string_ord = pointer_eq_ord (size_ord ||| string_ord);
fun option_ord ord (SOME x, SOME y) = ord (x, y)
| option_ord _ (NONE, NONE) = EQUAL
| option_ord _ (NONE, SOME _) = LESS
| option_ord _ (SOME _, NONE) = GREATER;
(*lexicographic product*)
fun prod_ord a_ord b_ord ((x, y), (x', y')) =
(case a_ord (x, x') of EQUAL => b_ord (y, y') | ord => ord);
(*dictionary order -- in general NOT well-founded!*)
fun dict_ord elem_ord (x :: xs, y :: ys) =
(case elem_ord (x, y) of EQUAL => dict_ord elem_ord (xs, ys) | ord => ord)
| dict_ord _ ([], []) = EQUAL
| dict_ord _ ([], _ :: _) = LESS
| dict_ord _ (_ :: _, []) = GREATER;
(*lexicographic product of lists*)
fun length_ord (xs, ys) = int_ord (length xs, length ys);
fun list_ord elem_ord = length_ord ||| dict_ord elem_ord;
(* sorting *)
(*stable mergesort -- preserves order of equal elements*)
fun mergesort unique ord =
let
fun merge (xs as x :: xs') (ys as y :: ys') =
(case ord (x, y) of
LESS => x :: merge xs' ys
| EQUAL =>
if unique then merge xs ys'
else x :: merge xs' ys
| GREATER => y :: merge xs ys')
| merge [] ys = ys
| merge xs [] = xs;
fun merge_all [xs] = xs
| merge_all xss = merge_all (merge_pairs xss)
and merge_pairs (xs :: ys :: xss) = merge xs ys :: merge_pairs xss
| merge_pairs xss = xss;
fun runs (x :: y :: xs) =
(case ord (x, y) of
LESS => ascending y [x] xs
| EQUAL =>
if unique then runs (x :: xs)
else ascending y [x] xs
| GREATER => descending y [x] xs)
| runs xs = [xs]
and ascending x xs (zs as y :: ys) =
(case ord (x, y) of
LESS => ascending y (x :: xs) ys
| EQUAL =>
if unique then ascending x xs ys
else ascending y (x :: xs) ys
| GREATER => rev (x :: xs) :: runs zs)
| ascending x xs [] = [rev (x :: xs)]
and descending x xs (zs as y :: ys) =
(case ord (x, y) of
GREATER => descending y (x :: xs) ys
| EQUAL =>
if unique then descending x xs ys
else (x :: xs) :: runs zs
| LESS => (x :: xs) :: runs zs)
| descending x xs [] = [x :: xs];
in merge_all o runs end;
fun sort ord = mergesort false ord;
fun sort_distinct ord = mergesort true ord;
val sort_strings = sort string_ord;
fun sort_by key xs = sort (string_ord o apply2 key) xs;
(* items tagged by integer index *)
(*insert tags*)
fun tag_list k [] = []
| tag_list k (x :: xs) = (k:int, x) :: tag_list (k + 1) xs;
(*remove tags and suppress duplicates -- list is assumed sorted!*)
fun untag_list [] = []
| untag_list [(k: int, x)] = [x]
| untag_list ((k, x) :: (rest as (k', x') :: _)) =
if k = k' then untag_list rest
else x :: untag_list rest;
(*return list elements in original order*)
fun order_list list = untag_list (sort (int_ord o apply2 fst) list);
(** misc **)
fun divide_and_conquer decomp x =
let val (ys, recomb) = decomp x
in recomb (map (divide_and_conquer decomp) ys) end;
fun divide_and_conquer' decomp x s =
let val ((ys, recomb), s') = decomp x s
in recomb (fold_map (divide_and_conquer' decomp) ys s') end;
(*Partition a list into buckets [ bi, b(i+1), ..., bj ]
putting x in bk if p(k)(x) holds. Preserve order of elements if possible.*)
fun partition_list p i j =
let
fun part (k: int) xs =
if k > j then
(case xs of
[] => []
| _ => raise Fail "partition_list")
else
let val (ns, rest) = List.partition (p k) xs
in ns :: part (k + 1) rest end;
in part (i: int) end;
fun partition_eq (eq: 'a * 'a -> bool) =
let
fun part [] = []
| part (x :: ys) =
let val (xs, xs') = List.partition (fn y => eq (x, y)) ys
in (x :: xs) :: part xs' end;
in part end;
(* serial numbers and abstract stamps *)
type serial = int;
val serial = Counter.make ();
val serial_string = string_of_int o serial;
datatype stamp = Stamp of serial;
fun stamp () = Stamp (serial ());
(* values of any type *)
(*note that the builtin exception datatype may be extended by new
constructors at any time*)
structure Any = struct type T = exn end;
(* getenv *)
fun getenv x =
(case OS.Process.getEnv x of
NONE => ""
| SOME y => y);
fun getenv_strict x =
(case getenv x of
"" => error ("Undefined Isabelle environment variable: " ^ quote x)
| y => y);
end;
structure Basic_Library: BASIC_LIBRARY = Library;
open Basic_Library;