(* ID: $Id$
Author: Florian Haftmann, TU Muenchen
*)
header {* A huge set of executable constants *}
theory ExecutableContent
imports
Main
(*Eval*)
"~~/src/HOL/ex/Records"
AssocList
Binomial
Commutative_Ring
"~~/src/HOL/ex/Commutative_Ring_Complete"
"~~/src/HOL/Real/RealDef"
GCD
List_Prefix
Nat_Infinity
NatPair
Nested_Environment
Permutation
Primes
Product_ord
SetsAndFunctions
State_Monad
While_Combinator
Word
begin
definition
n :: nat where
"n = 42"
definition
k :: "int" where
"k = -42"
datatype mut1 = Tip | Top mut2
and mut2 = Tip | Top mut1
consts
mut1 :: "mut1 \<Rightarrow> mut1"
mut2 :: "mut2 \<Rightarrow> mut2"
primrec
"mut1 mut1.Tip = mut1.Tip"
"mut1 (mut1.Top x) = mut1.Top (mut2 x)"
"mut2 mut2.Tip = mut2.Tip"
"mut2 (mut2.Top x) = mut2.Top (mut1 x)"
definition
"mystring = ''my home is my castle''"
text {* nested lets and such *}
definition
"abs_let x = (let (y, z) = x in (\<lambda>u. case u of () \<Rightarrow> (y + y)))"
definition
"nested_let x = (let (y, z) = x in let w = y z in w * w)"
definition
"case_let x = (let (y, z) = x in case y of () => z)"
definition
"base_case f = f list_case"
definition
"apply_tower = (\<lambda>x. x (\<lambda>x. x (\<lambda>x. x)))"
definition
"keywords fun datatype x instance funa classa =
Suc fun + datatype * x mod instance - funa - classa"
hide (open) const keywords
definition
"shadow keywords = keywords @ [ExecutableContent.keywords 0 0 0 0 0 0]"
definition
foo :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat" where
"foo r s t = (t + s) / t"
definition
bar :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> bool" where
"bar r s t \<longleftrightarrow> (r - s) \<le> t \<or> (s - t) \<le> r"
definition
"R1 = Fract 3 7"
definition
"R2 = Fract (-7) 5"
definition
"R3 = Fract 11 (-9)"
definition
"foobar = (foo R1 1 R3, bar R2 0 R3, foo R1 R3 R2)"
definition
foo' :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real" where
"foo' r s t = (t + s) / t"
definition
bar' :: "real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> bool" where
"bar' r s t \<longleftrightarrow> (r - s) \<le> t \<or> (s - t) \<le> r"
definition
"R1' = real_of_rat (Fract 3 7)"
definition
"R2' = real_of_rat (Fract (-7) 5)"
definition
"R3' = real_of_rat (Fract 11 (-9))"
definition
"foobar' = (foo' R1' 1 R3', bar' R2' 0 R3', foo' R1' R3' R2')"
end