more accurate markup for syntax consts, notably binders which point back to the original logical entity;
tuned;
(**** CTT examples -- process using Doc/tout CTT-eg.txt ****)
Pretty.setmargin 72; (*existing macros just allow this margin*)
print_depth 0;
(*** Type inference, from CTT/ex/typechk.ML ***)
Goal "lam n. rec(n, 0, %x y. x) : ?A";
by (resolve_tac [ProdI] 1);
by (eresolve_tac [NE] 2);
by (resolve_tac [NI0] 2);
by (assume_tac 2);
by (resolve_tac [NF] 1);
(*** Logical reasoning, from CTT/ex/elim.ML ***)
val prems = Goal
"[| A type; \
\ !!x. x:A ==> B(x) type; \
\ !!x. x:A ==> C(x) type; \
\ p: SUM x:A. B(x) + C(x) \
\ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";
by (resolve_tac (prems RL [SumE]) 1);
by (eresolve_tac [PlusE] 1);
by (resolve_tac [PlusI_inl] 1);
by (resolve_tac [SumI] 1);
by (assume_tac 1);
by (assume_tac 1);
by (typechk_tac prems);
by (pc_tac prems 1);
(*** Currying, from CTT/ex/elim.ML ***)
val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \
\ !!z. z: (SUM x:A. B(x)) ==> C(z) type \
\ |] ==> ?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)). \
\ (PROD x:A . PROD y:B(x) . C(<x,y>))";
by (intr_tac prems);
by (eresolve_tac [ProdE] 1);
by (intr_tac prems);
(*** Axiom of Choice ***)
val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \
\ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
\ |] ==> ?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)). \
\ (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";
by (intr_tac prems);
by (eresolve_tac [ProdE RS SumE_fst] 1);
by (assume_tac 1);
by (resolve_tac [replace_type] 1);
by (resolve_tac [subst_eqtyparg] 1);
by (resolve_tac [ProdC] 1);
by (typechk_tac (SumE_fst::prems));
by (eresolve_tac [ProdE RS SumE_snd] 1);
by (typechk_tac prems);
STOP_HERE;
> val prems = Goal
# "[| A type; \
# \ !!x. x:A ==> B(x) type; \
# \ !!x. x:A ==> C(x) type; \
# \ p: SUM x:A. B(x) + C(x) \
# \ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";
Level 0
?a : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (resolve_tac (prems RL [SumE]) 1);
Level 1
split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y.
[| x : A; y : B(x) + C(x) |] ==>
?c1(x,y) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (eresolve_tac [PlusE] 1);
Level 2
split(p,%x y. when(y,?c2(x,y),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa.
[| x : A; xa : B(x) |] ==>
?c2(x,y,xa) : (SUM x:A. B(x)) + (SUM x:A. C(x))
2. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (resolve_tac [PlusI_inl] 1);
Level 3
split(p,%x y. when(y,%xa. inl(?a3(x,y,xa)),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a3(x,y,xa) : SUM x:A. B(x)
2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
3. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (resolve_tac [SumI] 1);
Level 4
split(p,%x y. when(y,%xa. inl(<?a4(x,y,xa),?b4(x,y,xa)>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a4(x,y,xa) : A
2. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(?a4(x,y,xa))
3. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
4. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (assume_tac 1);
Level 5
split(p,%x y. when(y,%xa. inl(<x,?b4(x,y,xa)>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(x)
2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
3. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (assume_tac 1);
Level 6
split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
2. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (typechk_tac prems);
Level 7
split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))
> by (pc_tac prems 1);
Level 8
split(p,%x y. when(y,%xa. inl(<x,xa>),%y. inr(<x,y>)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
No subgoals!
> val prems = Goal
# "[| A type; !!x. x:A ==> B(x) type; \
# \ !!z. z: (SUM x:A. B(x)) ==> C(z) type |] \
# \ ==> ?a : (PROD z : (SUM x:A . B(x)) . C(z)) \
# \ --> (PROD x:A . PROD y:B(x) . C(<x,y>))";
Level 0
?a : (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->
(PROD x:A. PROD y:B(x). C(<x,y>))
> by (intr_tac prems);
Level 1
lam x xa xb. ?b7(x,xa,xb)
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. !!uu x y.
[| uu : PROD z:SUM x:A. B(x). C(z); x : A; y : B(x) |] ==>
?b7(uu,x,y) : C(<x,y>)
> by (eresolve_tac [ProdE] 1);
Level 2
lam x xa xb. x ` <xa,xb>
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. !!uu x y. [| x : A; y : B(x) |] ==> <x,y> : SUM x:A. B(x)
> by (intr_tac prems);
Level 3
lam x xa xb. x ` <xa,xb>
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
No subgoals!
> val prems = Goal
# "[| A type; !!x. x:A ==> B(x) type; \
# \ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
# \ |] ==> ?a : (PROD x:A. SUM y:B(x). C(x,y)) \
# \ --> (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";
Level 0
?a : (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. ?a : (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
> by (intr_tac prems);
Level 1
lam x. <lam xa. ?b7(x,xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b7(uu,x) : B(x)
2. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,(lam x. ?b7(uu,x)) ` x)
> by (eresolve_tac [ProdE RS SumE_fst] 1);
Level 2
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x. x : A ==> x : A
2. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,(lam x. fst(uu ` x)) ` x)
> by (assume_tac 1);
Level 3
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,(lam x. fst(uu ` x)) ` x)
> by (resolve_tac [replace_type] 1);
Level 4
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
C(x,(lam x. fst(uu ` x)) ` x) = ?A13(uu,x)
2. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : ?A13(uu,x)
> by (resolve_tac [subst_eqtyparg] 1);
Level 5
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
(lam x. fst(uu ` x)) ` x = ?c14(uu,x) : ?A14(uu,x)
2. !!uu x z.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A;
z : ?A14(uu,x) |] ==>
C(x,z) type
3. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,?c14(uu,x))
> by (resolve_tac [ProdC] 1);
Level 6
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==> x : ?A15(uu,x)
2. !!uu x xa.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A;
xa : ?A15(uu,x) |] ==>
fst(uu ` xa) : ?B15(uu,x,xa)
3. !!uu x z.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A;
z : ?B15(uu,x,x) |] ==>
C(x,z) type
4. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,fst(uu ` x))
> by (typechk_tac (SumE_fst::prems));
Level 7
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x.
[| uu : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(uu,x) : C(x,fst(uu ` x))
> by (eresolve_tac [ProdE RS SumE_snd] 1);
Level 8
lam x. <lam xa. fst(x ` xa),lam xa. snd(x ` xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!uu x. x : A ==> x : A
2. !!uu x. x : A ==> B(x) type
3. !!uu x xa. [| x : A; xa : B(x) |] ==> C(x,xa) type
> by (typechk_tac prems);
Level 9
lam x. <lam xa. fst(x ` xa),lam xa. snd(x ` xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->
(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
No subgoals!