move more lambda-handling logic to Sledgehammer, from ATP module, for formal dependency reasons
(* Title: ZF/equalities.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header{*Basic Equalities and Inclusions*}
theory equalities imports pair begin
text{*These cover union, intersection, converse, domain, range, etc. Philippe
de Groote proved many of the inclusions.*}
lemma in_mono: "A\<subseteq>B ==> x\<in>A --> x\<in>B"
by blast
lemma the_eq_0 [simp]: "(THE x. False) = 0"
by (blast intro: the_0)
subsection{*Bounded Quantifiers*}
text {* \medskip
The following are not added to the default simpset because
(a) they duplicate the body and (b) there are no similar rules for @{text Int}.*}
lemma ball_Un: "(\<forall>x \<in> A\<union>B. P(x)) <-> (\<forall>x \<in> A. P(x)) & (\<forall>x \<in> B. P(x))";
by blast
lemma bex_Un: "(\<exists>x \<in> A\<union>B. P(x)) <-> (\<exists>x \<in> A. P(x)) | (\<exists>x \<in> B. P(x))";
by blast
lemma ball_UN: "(\<forall>z \<in> (\<Union>x\<in>A. B(x)). P(z)) <-> (\<forall>x\<in>A. \<forall>z \<in> B(x). P(z))"
by blast
lemma bex_UN: "(\<exists>z \<in> (\<Union>x\<in>A. B(x)). P(z)) <-> (\<exists>x\<in>A. \<exists>z\<in>B(x). P(z))"
by blast
subsection{*Converse of a Relation*}
lemma converse_iff [simp]: "<a,b>\<in> converse(r) <-> <b,a>\<in>r"
by (unfold converse_def, blast)
lemma converseI [intro!]: "<a,b>\<in>r ==> <b,a>\<in>converse(r)"
by (unfold converse_def, blast)
lemma converseD: "<a,b> \<in> converse(r) ==> <b,a> \<in> r"
by (unfold converse_def, blast)
lemma converseE [elim!]:
"[| yx \<in> converse(r);
!!x y. [| yx=<y,x>; <x,y>\<in>r |] ==> P |]
==> P"
by (unfold converse_def, blast)
lemma converse_converse: "r\<subseteq>Sigma(A,B) ==> converse(converse(r)) = r"
by blast
lemma converse_type: "r\<subseteq>A*B ==> converse(r)\<subseteq>B*A"
by blast
lemma converse_prod [simp]: "converse(A*B) = B*A"
by blast
lemma converse_empty [simp]: "converse(0) = 0"
by blast
lemma converse_subset_iff:
"A \<subseteq> Sigma(X,Y) ==> converse(A) \<subseteq> converse(B) <-> A \<subseteq> B"
by blast
subsection{*Finite Set Constructions Using @{term cons}*}
lemma cons_subsetI: "[| a\<in>C; B\<subseteq>C |] ==> cons(a,B) \<subseteq> C"
by blast
lemma subset_consI: "B \<subseteq> cons(a,B)"
by blast
lemma cons_subset_iff [iff]: "cons(a,B)\<subseteq>C <-> a\<in>C & B\<subseteq>C"
by blast
(*A safe special case of subset elimination, adding no new variables
[| cons(a,B) \<subseteq> C; [| a \<in> C; B \<subseteq> C |] ==> R |] ==> R *)
lemmas cons_subsetE = cons_subset_iff [THEN iffD1, THEN conjE, standard]
lemma subset_empty_iff: "A\<subseteq>0 <-> A=0"
by blast
lemma subset_cons_iff: "C\<subseteq>cons(a,B) <-> C\<subseteq>B | (a\<in>C & C-{a} \<subseteq> B)"
by blast
(* cons_def refers to Upair; reversing the equality LOOPS in rewriting!*)
lemma cons_eq: "{a} Un B = cons(a,B)"
by blast
lemma cons_commute: "cons(a, cons(b, C)) = cons(b, cons(a, C))"
by blast
lemma cons_absorb: "a: B ==> cons(a,B) = B"
by blast
lemma cons_Diff: "a: B ==> cons(a, B-{a}) = B"
by blast
lemma Diff_cons_eq: "cons(a,B) - C = (if a\<in>C then B-C else cons(a,B-C))"
by auto
lemma equal_singleton [rule_format]: "[| a: C; \<forall>y\<in>C. y=b |] ==> C = {b}"
by blast
lemma [simp]: "cons(a,cons(a,B)) = cons(a,B)"
by blast
(** singletons **)
lemma singleton_subsetI: "a\<in>C ==> {a} \<subseteq> C"
by blast
lemma singleton_subsetD: "{a} \<subseteq> C ==> a\<in>C"
by blast
(** succ **)
lemma subset_succI: "i \<subseteq> succ(i)"
by blast
(*But if j is an ordinal or is transitive, then i\<in>j implies i\<subseteq>j!
See ordinal/Ord_succ_subsetI*)
lemma succ_subsetI: "[| i\<in>j; i\<subseteq>j |] ==> succ(i)\<subseteq>j"
by (unfold succ_def, blast)
lemma succ_subsetE:
"[| succ(i) \<subseteq> j; [| i\<in>j; i\<subseteq>j |] ==> P |] ==> P"
by (unfold succ_def, blast)
lemma succ_subset_iff: "succ(a) \<subseteq> B <-> (a \<subseteq> B & a \<in> B)"
by (unfold succ_def, blast)
subsection{*Binary Intersection*}
(** Intersection is the greatest lower bound of two sets **)
lemma Int_subset_iff: "C \<subseteq> A Int B <-> C \<subseteq> A & C \<subseteq> B"
by blast
lemma Int_lower1: "A Int B \<subseteq> A"
by blast
lemma Int_lower2: "A Int B \<subseteq> B"
by blast
lemma Int_greatest: "[| C\<subseteq>A; C\<subseteq>B |] ==> C \<subseteq> A Int B"
by blast
lemma Int_cons: "cons(a,B) Int C \<subseteq> cons(a, B Int C)"
by blast
lemma Int_absorb [simp]: "A Int A = A"
by blast
lemma Int_left_absorb: "A Int (A Int B) = A Int B"
by blast
lemma Int_commute: "A Int B = B Int A"
by blast
lemma Int_left_commute: "A Int (B Int C) = B Int (A Int C)"
by blast
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"
by blast
(*Intersection is an AC-operator*)
lemmas Int_ac= Int_assoc Int_left_absorb Int_commute Int_left_commute
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
by blast
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
by blast
lemma Int_Un_distrib: "A Int (B Un C) = (A Int B) Un (A Int C)"
by blast
lemma Int_Un_distrib2: "(B Un C) Int A = (B Int A) Un (C Int A)"
by blast
lemma subset_Int_iff: "A\<subseteq>B <-> A Int B = A"
by (blast elim!: equalityE)
lemma subset_Int_iff2: "A\<subseteq>B <-> B Int A = A"
by (blast elim!: equalityE)
lemma Int_Diff_eq: "C\<subseteq>A ==> (A-B) Int C = C-B"
by blast
lemma Int_cons_left:
"cons(a,A) Int B = (if a \<in> B then cons(a, A Int B) else A Int B)"
by auto
lemma Int_cons_right:
"A Int cons(a, B) = (if a \<in> A then cons(a, A Int B) else A Int B)"
by auto
lemma cons_Int_distrib: "cons(x, A \<inter> B) = cons(x, A) \<inter> cons(x, B)"
by auto
subsection{*Binary Union*}
(** Union is the least upper bound of two sets *)
lemma Un_subset_iff: "A Un B \<subseteq> C <-> A \<subseteq> C & B \<subseteq> C"
by blast
lemma Un_upper1: "A \<subseteq> A Un B"
by blast
lemma Un_upper2: "B \<subseteq> A Un B"
by blast
lemma Un_least: "[| A\<subseteq>C; B\<subseteq>C |] ==> A Un B \<subseteq> C"
by blast
lemma Un_cons: "cons(a,B) Un C = cons(a, B Un C)"
by blast
lemma Un_absorb [simp]: "A Un A = A"
by blast
lemma Un_left_absorb: "A Un (A Un B) = A Un B"
by blast
lemma Un_commute: "A Un B = B Un A"
by blast
lemma Un_left_commute: "A Un (B Un C) = B Un (A Un C)"
by blast
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"
by blast
(*Union is an AC-operator*)
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
by blast
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
by blast
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"
by blast
lemma subset_Un_iff: "A\<subseteq>B <-> A Un B = B"
by (blast elim!: equalityE)
lemma subset_Un_iff2: "A\<subseteq>B <-> B Un A = B"
by (blast elim!: equalityE)
lemma Un_empty [iff]: "(A Un B = 0) <-> (A = 0 & B = 0)"
by blast
lemma Un_eq_Union: "A Un B = Union({A, B})"
by blast
subsection{*Set Difference*}
lemma Diff_subset: "A-B \<subseteq> A"
by blast
lemma Diff_contains: "[| C\<subseteq>A; C Int B = 0 |] ==> C \<subseteq> A-B"
by blast
lemma subset_Diff_cons_iff: "B \<subseteq> A - cons(c,C) <-> B\<subseteq>A-C & c ~: B"
by blast
lemma Diff_cancel: "A - A = 0"
by blast
lemma Diff_triv: "A Int B = 0 ==> A - B = A"
by blast
lemma empty_Diff [simp]: "0 - A = 0"
by blast
lemma Diff_0 [simp]: "A - 0 = A"
by blast
lemma Diff_eq_0_iff: "A - B = 0 <-> A \<subseteq> B"
by (blast elim: equalityE)
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
lemma Diff_cons: "A - cons(a,B) = A - B - {a}"
by blast
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
lemma Diff_cons2: "A - cons(a,B) = A - {a} - B"
by blast
lemma Diff_disjoint: "A Int (B-A) = 0"
by blast
lemma Diff_partition: "A\<subseteq>B ==> A Un (B-A) = B"
by blast
lemma subset_Un_Diff: "A \<subseteq> B Un (A - B)"
by blast
lemma double_complement: "[| A\<subseteq>B; B\<subseteq>C |] ==> B-(C-A) = A"
by blast
lemma double_complement_Un: "(A Un B) - (B-A) = A"
by blast
lemma Un_Int_crazy:
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
apply blast
done
lemma Diff_Un: "A - (B Un C) = (A-B) Int (A-C)"
by blast
lemma Diff_Int: "A - (B Int C) = (A-B) Un (A-C)"
by blast
lemma Un_Diff: "(A Un B) - C = (A - C) Un (B - C)"
by blast
lemma Int_Diff: "(A Int B) - C = A Int (B - C)"
by blast
lemma Diff_Int_distrib: "C Int (A-B) = (C Int A) - (C Int B)"
by blast
lemma Diff_Int_distrib2: "(A-B) Int C = (A Int C) - (B Int C)"
by blast
(*Halmos, Naive Set Theory, page 16.*)
lemma Un_Int_assoc_iff: "(A Int B) Un C = A Int (B Un C) <-> C\<subseteq>A"
by (blast elim!: equalityE)
subsection{*Big Union and Intersection*}
(** Big Union is the least upper bound of a set **)
lemma Union_subset_iff: "Union(A) \<subseteq> C <-> (\<forall>x\<in>A. x \<subseteq> C)"
by blast
lemma Union_upper: "B\<in>A ==> B \<subseteq> Union(A)"
by blast
lemma Union_least: "[| !!x. x\<in>A ==> x\<subseteq>C |] ==> Union(A) \<subseteq> C"
by blast
lemma Union_cons [simp]: "Union(cons(a,B)) = a Un Union(B)"
by blast
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
by blast
lemma Union_Int_subset: "Union(A Int B) \<subseteq> Union(A) Int Union(B)"
by blast
lemma Union_disjoint: "Union(C) Int A = 0 <-> (\<forall>B\<in>C. B Int A = 0)"
by (blast elim!: equalityE)
lemma Union_empty_iff: "Union(A) = 0 <-> (\<forall>B\<in>A. B=0)"
by blast
lemma Int_Union2: "Union(B) Int A = (\<Union>C\<in>B. C Int A)"
by blast
(** Big Intersection is the greatest lower bound of a nonempty set **)
lemma Inter_subset_iff: "A\<noteq>0 ==> C \<subseteq> Inter(A) <-> (\<forall>x\<in>A. C \<subseteq> x)"
by blast
lemma Inter_lower: "B\<in>A ==> Inter(A) \<subseteq> B"
by blast
lemma Inter_greatest: "[| A\<noteq>0; !!x. x\<in>A ==> C\<subseteq>x |] ==> C \<subseteq> Inter(A)"
by blast
(** Intersection of a family of sets **)
lemma INT_lower: "x\<in>A ==> (\<Inter>x\<in>A. B(x)) \<subseteq> B(x)"
by blast
lemma INT_greatest: "[| A\<noteq>0; !!x. x\<in>A ==> C\<subseteq>B(x) |] ==> C \<subseteq> (\<Inter>x\<in>A. B(x))"
by force
lemma Inter_0 [simp]: "Inter(0) = 0"
by (unfold Inter_def, blast)
lemma Inter_Un_subset:
"[| z\<in>A; z\<in>B |] ==> Inter(A) Un Inter(B) \<subseteq> Inter(A Int B)"
by blast
(* A good challenge: Inter is ill-behaved on the empty set *)
lemma Inter_Un_distrib:
"[| A\<noteq>0; B\<noteq>0 |] ==> Inter(A Un B) = Inter(A) Int Inter(B)"
by blast
lemma Union_singleton: "Union({b}) = b"
by blast
lemma Inter_singleton: "Inter({b}) = b"
by blast
lemma Inter_cons [simp]:
"Inter(cons(a,B)) = (if B=0 then a else a Int Inter(B))"
by force
subsection{*Unions and Intersections of Families*}
lemma subset_UN_iff_eq: "A \<subseteq> (\<Union>i\<in>I. B(i)) <-> A = (\<Union>i\<in>I. A Int B(i))"
by (blast elim!: equalityE)
lemma UN_subset_iff: "(\<Union>x\<in>A. B(x)) \<subseteq> C <-> (\<forall>x\<in>A. B(x) \<subseteq> C)"
by blast
lemma UN_upper: "x\<in>A ==> B(x) \<subseteq> (\<Union>x\<in>A. B(x))"
by (erule RepFunI [THEN Union_upper])
lemma UN_least: "[| !!x. x\<in>A ==> B(x)\<subseteq>C |] ==> (\<Union>x\<in>A. B(x)) \<subseteq> C"
by blast
lemma Union_eq_UN: "Union(A) = (\<Union>x\<in>A. x)"
by blast
lemma Inter_eq_INT: "Inter(A) = (\<Inter>x\<in>A. x)"
by (unfold Inter_def, blast)
lemma UN_0 [simp]: "(\<Union>i\<in>0. A(i)) = 0"
by blast
lemma UN_singleton: "(\<Union>x\<in>A. {x}) = A"
by blast
lemma UN_Un: "(\<Union>i\<in> A Un B. C(i)) = (\<Union>i\<in> A. C(i)) Un (\<Union>i\<in>B. C(i))"
by blast
lemma INT_Un: "(\<Inter>i\<in>I Un J. A(i)) =
(if I=0 then \<Inter>j\<in>J. A(j)
else if J=0 then \<Inter>i\<in>I. A(i)
else ((\<Inter>i\<in>I. A(i)) Int (\<Inter>j\<in>J. A(j))))"
by (simp, blast intro!: equalityI)
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B(y)). C(x)) = (\<Union>y\<in>A. \<Union>x\<in> B(y). C(x))"
by blast
(*Halmos, Naive Set Theory, page 35.*)
lemma Int_UN_distrib: "B Int (\<Union>i\<in>I. A(i)) = (\<Union>i\<in>I. B Int A(i))"
by blast
lemma Un_INT_distrib: "I\<noteq>0 ==> B Un (\<Inter>i\<in>I. A(i)) = (\<Inter>i\<in>I. B Un A(i))"
by auto
lemma Int_UN_distrib2:
"(\<Union>i\<in>I. A(i)) Int (\<Union>j\<in>J. B(j)) = (\<Union>i\<in>I. \<Union>j\<in>J. A(i) Int B(j))"
by blast
lemma Un_INT_distrib2: "[| I\<noteq>0; J\<noteq>0 |] ==>
(\<Inter>i\<in>I. A(i)) Un (\<Inter>j\<in>J. B(j)) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A(i) Un B(j))"
by auto
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A=0 then 0 else c)"
by force
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A=0 then 0 else c)"
by force
lemma UN_RepFun [simp]: "(\<Union>y\<in> RepFun(A,f). B(y)) = (\<Union>x\<in>A. B(f(x)))"
by blast
lemma INT_RepFun [simp]: "(\<Inter>x\<in>RepFun(A,f). B(x)) = (\<Inter>a\<in>A. B(f(a)))"
by (auto simp add: Inter_def)
lemma INT_Union_eq:
"0 ~: A ==> (\<Inter>x\<in> Union(A). B(x)) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B(x))"
apply (subgoal_tac "\<forall>x\<in>A. x~=0")
prefer 2 apply blast
apply (force simp add: Inter_def ball_conj_distrib)
done
lemma INT_UN_eq:
"(\<forall>x\<in>A. B(x) ~= 0)
==> (\<Inter>z\<in> (\<Union>x\<in>A. B(x)). C(z)) = (\<Inter>x\<in>A. \<Inter>z\<in> B(x). C(z))"
apply (subst INT_Union_eq, blast)
apply (simp add: Inter_def)
done
(** Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:
Union of a family of unions **)
lemma UN_Un_distrib:
"(\<Union>i\<in>I. A(i) Un B(i)) = (\<Union>i\<in>I. A(i)) Un (\<Union>i\<in>I. B(i))"
by blast
lemma INT_Int_distrib:
"I\<noteq>0 ==> (\<Inter>i\<in>I. A(i) Int B(i)) = (\<Inter>i\<in>I. A(i)) Int (\<Inter>i\<in>I. B(i))"
by (blast elim!: not_emptyE)
lemma UN_Int_subset:
"(\<Union>z\<in>I Int J. A(z)) \<subseteq> (\<Union>z\<in>I. A(z)) Int (\<Union>z\<in>J. A(z))"
by blast
(** Devlin, page 12, exercise 5: Complements **)
lemma Diff_UN: "I\<noteq>0 ==> B - (\<Union>i\<in>I. A(i)) = (\<Inter>i\<in>I. B - A(i))"
by (blast elim!: not_emptyE)
lemma Diff_INT: "I\<noteq>0 ==> B - (\<Inter>i\<in>I. A(i)) = (\<Union>i\<in>I. B - A(i))"
by (blast elim!: not_emptyE)
(** Unions and Intersections with General Sum **)
(*Not suitable for rewriting: LOOPS!*)
lemma Sigma_cons1: "Sigma(cons(a,B), C) = ({a}*C(a)) Un Sigma(B,C)"
by blast
(*Not suitable for rewriting: LOOPS!*)
lemma Sigma_cons2: "A * cons(b,B) = A*{b} Un A*B"
by blast
lemma Sigma_succ1: "Sigma(succ(A), B) = ({A}*B(A)) Un Sigma(A,B)"
by blast
lemma Sigma_succ2: "A * succ(B) = A*{B} Un A*B"
by blast
lemma SUM_UN_distrib1:
"(\<Sigma> x \<in> (\<Union>y\<in>A. C(y)). B(x)) = (\<Union>y\<in>A. \<Sigma> x\<in>C(y). B(x))"
by blast
lemma SUM_UN_distrib2:
"(\<Sigma> i\<in>I. \<Union>j\<in>J. C(i,j)) = (\<Union>j\<in>J. \<Sigma> i\<in>I. C(i,j))"
by blast
lemma SUM_Un_distrib1:
"(\<Sigma> i\<in>I Un J. C(i)) = (\<Sigma> i\<in>I. C(i)) Un (\<Sigma> j\<in>J. C(j))"
by blast
lemma SUM_Un_distrib2:
"(\<Sigma> i\<in>I. A(i) Un B(i)) = (\<Sigma> i\<in>I. A(i)) Un (\<Sigma> i\<in>I. B(i))"
by blast
(*First-order version of the above, for rewriting*)
lemma prod_Un_distrib2: "I * (A Un B) = I*A Un I*B"
by (rule SUM_Un_distrib2)
lemma SUM_Int_distrib1:
"(\<Sigma> i\<in>I Int J. C(i)) = (\<Sigma> i\<in>I. C(i)) Int (\<Sigma> j\<in>J. C(j))"
by blast
lemma SUM_Int_distrib2:
"(\<Sigma> i\<in>I. A(i) Int B(i)) = (\<Sigma> i\<in>I. A(i)) Int (\<Sigma> i\<in>I. B(i))"
by blast
(*First-order version of the above, for rewriting*)
lemma prod_Int_distrib2: "I * (A Int B) = I*A Int I*B"
by (rule SUM_Int_distrib2)
(*Cf Aczel, Non-Well-Founded Sets, page 115*)
lemma SUM_eq_UN: "(\<Sigma> i\<in>I. A(i)) = (\<Union>i\<in>I. {i} * A(i))"
by blast
lemma times_subset_iff:
"(A'*B' \<subseteq> A*B) <-> (A' = 0 | B' = 0 | (A'\<subseteq>A) & (B'\<subseteq>B))"
by blast
lemma Int_Sigma_eq:
"(\<Sigma> x \<in> A'. B'(x)) Int (\<Sigma> x \<in> A. B(x)) = (\<Sigma> x \<in> A' Int A. B'(x) Int B(x))"
by blast
(** Domain **)
lemma domain_iff: "a: domain(r) <-> (EX y. <a,y>\<in> r)"
by (unfold domain_def, blast)
lemma domainI [intro]: "<a,b>\<in> r ==> a: domain(r)"
by (unfold domain_def, blast)
lemma domainE [elim!]:
"[| a \<in> domain(r); !!y. <a,y>\<in> r ==> P |] ==> P"
by (unfold domain_def, blast)
lemma domain_subset: "domain(Sigma(A,B)) \<subseteq> A"
by blast
lemma domain_of_prod: "b\<in>B ==> domain(A*B) = A"
by blast
lemma domain_0 [simp]: "domain(0) = 0"
by blast
lemma domain_cons [simp]: "domain(cons(<a,b>,r)) = cons(a, domain(r))"
by blast
lemma domain_Un_eq [simp]: "domain(A Un B) = domain(A) Un domain(B)"
by blast
lemma domain_Int_subset: "domain(A Int B) \<subseteq> domain(A) Int domain(B)"
by blast
lemma domain_Diff_subset: "domain(A) - domain(B) \<subseteq> domain(A - B)"
by blast
lemma domain_UN: "domain(\<Union>x\<in>A. B(x)) = (\<Union>x\<in>A. domain(B(x)))"
by blast
lemma domain_Union: "domain(Union(A)) = (\<Union>x\<in>A. domain(x))"
by blast
(** Range **)
lemma rangeI [intro]: "<a,b>\<in> r ==> b \<in> range(r)"
apply (unfold range_def)
apply (erule converseI [THEN domainI])
done
lemma rangeE [elim!]: "[| b \<in> range(r); !!x. <x,b>\<in> r ==> P |] ==> P"
by (unfold range_def, blast)
lemma range_subset: "range(A*B) \<subseteq> B"
apply (unfold range_def)
apply (subst converse_prod)
apply (rule domain_subset)
done
lemma range_of_prod: "a\<in>A ==> range(A*B) = B"
by blast
lemma range_0 [simp]: "range(0) = 0"
by blast
lemma range_cons [simp]: "range(cons(<a,b>,r)) = cons(b, range(r))"
by blast
lemma range_Un_eq [simp]: "range(A Un B) = range(A) Un range(B)"
by blast
lemma range_Int_subset: "range(A Int B) \<subseteq> range(A) Int range(B)"
by blast
lemma range_Diff_subset: "range(A) - range(B) \<subseteq> range(A - B)"
by blast
lemma domain_converse [simp]: "domain(converse(r)) = range(r)"
by blast
lemma range_converse [simp]: "range(converse(r)) = domain(r)"
by blast
(** Field **)
lemma fieldI1: "<a,b>\<in> r ==> a \<in> field(r)"
by (unfold field_def, blast)
lemma fieldI2: "<a,b>\<in> r ==> b \<in> field(r)"
by (unfold field_def, blast)
lemma fieldCI [intro]:
"(~ <c,a>\<in>r ==> <a,b>\<in> r) ==> a \<in> field(r)"
apply (unfold field_def, blast)
done
lemma fieldE [elim!]:
"[| a \<in> field(r);
!!x. <a,x>\<in> r ==> P;
!!x. <x,a>\<in> r ==> P |] ==> P"
by (unfold field_def, blast)
lemma field_subset: "field(A*B) \<subseteq> A Un B"
by blast
lemma domain_subset_field: "domain(r) \<subseteq> field(r)"
apply (unfold field_def)
apply (rule Un_upper1)
done
lemma range_subset_field: "range(r) \<subseteq> field(r)"
apply (unfold field_def)
apply (rule Un_upper2)
done
lemma domain_times_range: "r \<subseteq> Sigma(A,B) ==> r \<subseteq> domain(r)*range(r)"
by blast
lemma field_times_field: "r \<subseteq> Sigma(A,B) ==> r \<subseteq> field(r)*field(r)"
by blast
lemma relation_field_times_field: "relation(r) ==> r \<subseteq> field(r)*field(r)"
by (simp add: relation_def, blast)
lemma field_of_prod: "field(A*A) = A"
by blast
lemma field_0 [simp]: "field(0) = 0"
by blast
lemma field_cons [simp]: "field(cons(<a,b>,r)) = cons(a, cons(b, field(r)))"
by blast
lemma field_Un_eq [simp]: "field(A Un B) = field(A) Un field(B)"
by blast
lemma field_Int_subset: "field(A Int B) \<subseteq> field(A) Int field(B)"
by blast
lemma field_Diff_subset: "field(A) - field(B) \<subseteq> field(A - B)"
by blast
lemma field_converse [simp]: "field(converse(r)) = field(r)"
by blast
(** The Union of a set of relations is a relation -- Lemma for fun_Union **)
lemma rel_Union: "(\<forall>x\<in>S. EX A B. x \<subseteq> A*B) ==>
Union(S) \<subseteq> domain(Union(S)) * range(Union(S))"
by blast
(** The Union of 2 relations is a relation (Lemma for fun_Un) **)
lemma rel_Un: "[| r \<subseteq> A*B; s \<subseteq> C*D |] ==> (r Un s) \<subseteq> (A Un C) * (B Un D)"
by blast
lemma domain_Diff_eq: "[| <a,c> \<in> r; c~=b |] ==> domain(r-{<a,b>}) = domain(r)"
by blast
lemma range_Diff_eq: "[| <c,b> \<in> r; c~=a |] ==> range(r-{<a,b>}) = range(r)"
by blast
subsection{*Image of a Set under a Function or Relation*}
lemma image_iff: "b \<in> r``A <-> (\<exists>x\<in>A. <x,b>\<in>r)"
by (unfold image_def, blast)
lemma image_singleton_iff: "b \<in> r``{a} <-> <a,b>\<in>r"
by (rule image_iff [THEN iff_trans], blast)
lemma imageI [intro]: "[| <a,b>\<in> r; a\<in>A |] ==> b \<in> r``A"
by (unfold image_def, blast)
lemma imageE [elim!]:
"[| b: r``A; !!x.[| <x,b>\<in> r; x\<in>A |] ==> P |] ==> P"
by (unfold image_def, blast)
lemma image_subset: "r \<subseteq> A*B ==> r``C \<subseteq> B"
by blast
lemma image_0 [simp]: "r``0 = 0"
by blast
lemma image_Un [simp]: "r``(A Un B) = (r``A) Un (r``B)"
by blast
lemma image_UN: "r `` (\<Union>x\<in>A. B(x)) = (\<Union>x\<in>A. r `` B(x))"
by blast
lemma Collect_image_eq:
"{z \<in> Sigma(A,B). P(z)} `` C = (\<Union>x \<in> A. {y \<in> B(x). x \<in> C & P(<x,y>)})"
by blast
lemma image_Int_subset: "r``(A Int B) \<subseteq> (r``A) Int (r``B)"
by blast
lemma image_Int_square_subset: "(r Int A*A)``B \<subseteq> (r``B) Int A"
by blast
lemma image_Int_square: "B\<subseteq>A ==> (r Int A*A)``B = (r``B) Int A"
by blast
(*Image laws for special relations*)
lemma image_0_left [simp]: "0``A = 0"
by blast
lemma image_Un_left: "(r Un s)``A = (r``A) Un (s``A)"
by blast
lemma image_Int_subset_left: "(r Int s)``A \<subseteq> (r``A) Int (s``A)"
by blast
subsection{*Inverse Image of a Set under a Function or Relation*}
lemma vimage_iff:
"a \<in> r-``B <-> (\<exists>y\<in>B. <a,y>\<in>r)"
by (unfold vimage_def image_def converse_def, blast)
lemma vimage_singleton_iff: "a \<in> r-``{b} <-> <a,b>\<in>r"
by (rule vimage_iff [THEN iff_trans], blast)
lemma vimageI [intro]: "[| <a,b>\<in> r; b\<in>B |] ==> a \<in> r-``B"
by (unfold vimage_def, blast)
lemma vimageE [elim!]:
"[| a: r-``B; !!x.[| <a,x>\<in> r; x\<in>B |] ==> P |] ==> P"
apply (unfold vimage_def, blast)
done
lemma vimage_subset: "r \<subseteq> A*B ==> r-``C \<subseteq> A"
apply (unfold vimage_def)
apply (erule converse_type [THEN image_subset])
done
lemma vimage_0 [simp]: "r-``0 = 0"
by blast
lemma vimage_Un [simp]: "r-``(A Un B) = (r-``A) Un (r-``B)"
by blast
lemma vimage_Int_subset: "r-``(A Int B) \<subseteq> (r-``A) Int (r-``B)"
by blast
(*NOT suitable for rewriting*)
lemma vimage_eq_UN: "f -``B = (\<Union>y\<in>B. f-``{y})"
by blast
lemma function_vimage_Int:
"function(f) ==> f-``(A Int B) = (f-``A) Int (f-``B)"
by (unfold function_def, blast)
lemma function_vimage_Diff: "function(f) ==> f-``(A-B) = (f-``A) - (f-``B)"
by (unfold function_def, blast)
lemma function_image_vimage: "function(f) ==> f `` (f-`` A) \<subseteq> A"
by (unfold function_def, blast)
lemma vimage_Int_square_subset: "(r Int A*A)-``B \<subseteq> (r-``B) Int A"
by blast
lemma vimage_Int_square: "B\<subseteq>A ==> (r Int A*A)-``B = (r-``B) Int A"
by blast
(*Invese image laws for special relations*)
lemma vimage_0_left [simp]: "0-``A = 0"
by blast
lemma vimage_Un_left: "(r Un s)-``A = (r-``A) Un (s-``A)"
by blast
lemma vimage_Int_subset_left: "(r Int s)-``A \<subseteq> (r-``A) Int (s-``A)"
by blast
(** Converse **)
lemma converse_Un [simp]: "converse(A Un B) = converse(A) Un converse(B)"
by blast
lemma converse_Int [simp]: "converse(A Int B) = converse(A) Int converse(B)"
by blast
lemma converse_Diff [simp]: "converse(A - B) = converse(A) - converse(B)"
by blast
lemma converse_UN [simp]: "converse(\<Union>x\<in>A. B(x)) = (\<Union>x\<in>A. converse(B(x)))"
by blast
(*Unfolding Inter avoids using excluded middle on A=0*)
lemma converse_INT [simp]:
"converse(\<Inter>x\<in>A. B(x)) = (\<Inter>x\<in>A. converse(B(x)))"
apply (unfold Inter_def, blast)
done
subsection{*Powerset Operator*}
lemma Pow_0 [simp]: "Pow(0) = {0}"
by blast
lemma Pow_insert: "Pow (cons(a,A)) = Pow(A) Un {cons(a,X) . X: Pow(A)}"
apply (rule equalityI, safe)
apply (erule swap)
apply (rule_tac a = "x-{a}" in RepFun_eqI, auto)
done
lemma Un_Pow_subset: "Pow(A) Un Pow(B) \<subseteq> Pow(A Un B)"
by blast
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow(B(x))) \<subseteq> Pow(\<Union>x\<in>A. B(x))"
by blast
lemma subset_Pow_Union: "A \<subseteq> Pow(Union(A))"
by blast
lemma Union_Pow_eq [simp]: "Union(Pow(A)) = A"
by blast
lemma Union_Pow_iff: "Union(A) \<in> Pow(B) <-> A \<in> Pow(Pow(B))"
by blast
lemma Pow_Int_eq [simp]: "Pow(A Int B) = Pow(A) Int Pow(B)"
by blast
lemma Pow_INT_eq: "A\<noteq>0 ==> Pow(\<Inter>x\<in>A. B(x)) = (\<Inter>x\<in>A. Pow(B(x)))"
by (blast elim!: not_emptyE)
subsection{*RepFun*}
lemma RepFun_subset: "[| !!x. x\<in>A ==> f(x) \<in> B |] ==> {f(x). x\<in>A} \<subseteq> B"
by blast
lemma RepFun_eq_0_iff [simp]: "{f(x).x\<in>A}=0 <-> A=0"
by blast
lemma RepFun_constant [simp]: "{c. x\<in>A} = (if A=0 then 0 else {c})"
by force
subsection{*Collect*}
lemma Collect_subset: "Collect(A,P) \<subseteq> A"
by blast
lemma Collect_Un: "Collect(A Un B, P) = Collect(A,P) Un Collect(B,P)"
by blast
lemma Collect_Int: "Collect(A Int B, P) = Collect(A,P) Int Collect(B,P)"
by blast
lemma Collect_Diff: "Collect(A - B, P) = Collect(A,P) - Collect(B,P)"
by blast
lemma Collect_cons: "{x\<in>cons(a,B). P(x)} =
(if P(a) then cons(a, {x\<in>B. P(x)}) else {x\<in>B. P(x)})"
by (simp, blast)
lemma Int_Collect_self_eq: "A Int Collect(A,P) = Collect(A,P)"
by blast
lemma Collect_Collect_eq [simp]:
"Collect(Collect(A,P), Q) = Collect(A, %x. P(x) & Q(x))"
by blast
lemma Collect_Int_Collect_eq:
"Collect(A,P) Int Collect(A,Q) = Collect(A, %x. P(x) & Q(x))"
by blast
lemma Collect_Union_eq [simp]:
"Collect(\<Union>x\<in>A. B(x), P) = (\<Union>x\<in>A. Collect(B(x), P))"
by blast
lemma Collect_Int_left: "{x\<in>A. P(x)} Int B = {x \<in> A Int B. P(x)}"
by blast
lemma Collect_Int_right: "A Int {x\<in>B. P(x)} = {x \<in> A Int B. P(x)}"
by blast
lemma Collect_disj_eq: "{x\<in>A. P(x) | Q(x)} = Collect(A, P) Un Collect(A, Q)"
by blast
lemma Collect_conj_eq: "{x\<in>A. P(x) & Q(x)} = Collect(A, P) Int Collect(A, Q)"
by blast
lemmas subset_SIs = subset_refl cons_subsetI subset_consI
Union_least UN_least Un_least
Inter_greatest Int_greatest RepFun_subset
Un_upper1 Un_upper2 Int_lower1 Int_lower2
ML {*
val subset_cs =
claset_of (@{context}
delrules [@{thm subsetI}, @{thm subsetCE}]
addSIs @{thms subset_SIs}
addIs [@{thm Union_upper}, @{thm Inter_lower}]
addSEs [@{thm cons_subsetE}]);
val ZF_cs = claset_of (@{context} delrules [@{thm equalityI}]);
*}
end