| author | wenzelm |
| Sat, 29 Sep 2007 21:39:46 +0200 | |
| changeset 24761 | d762ab297a07 |
| parent 24748 | ee0a0eb6b738 |
| child 24901 | d3cbf79769b9 |
| permissions | -rw-r--r-- |
(* Title : RealVector.thy ID: $Id$ Author : Brian Huffman *) header {* Vector Spaces and Algebras over the Reals *} theory RealVector imports RealPow begin subsection {* Locale for additive functions *} locale additive = fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add" assumes add: "f (x + y) = f x + f y" lemma (in additive) zero: "f 0 = 0" proof - have "f 0 = f (0 + 0)" by simp also have "\<dots> = f 0 + f 0" by (rule add) finally show "f 0 = 0" by simp qed lemma (in additive) minus: "f (- x) = - f x" proof - have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) also have "\<dots> = - f x + f x" by (simp add: zero) finally show "f (- x) = - f x" by (rule add_right_imp_eq) qed lemma (in additive) diff: "f (x - y) = f x - f y" by (simp add: diff_def add minus) lemma (in additive) setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))" apply (cases "finite A") apply (induct set: finite) apply (simp add: zero) apply (simp add: add) apply (simp add: zero) done subsection {* Real vector spaces *} class scaleR = type + fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<^loc>*#" 75) begin abbreviation divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "\<^loc>'/#" 70) where "x \<^loc>/# r == scaleR (inverse r) x" end abbreviation divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a\<Colon>scaleR" (infixl "'/#" 70) where "x /# r == scaleR (inverse r) x" notation (xsymbols) scaleR (infixr "*\<^sub>R" 75) and divideR (infixl "'/\<^sub>R" 70) instance real :: scaleR real_scaleR_def [simp]: "scaleR a x \<equiv> a * x" .. class real_vector = scaleR + ab_group_add + assumes scaleR_right_distrib: "scaleR a (x \<^loc>+ y) = scaleR a x \<^loc>+ scaleR a y" and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x \<^loc>+ scaleR b x" and scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x" and scaleR_one [simp]: "scaleR 1 x = x" class real_algebra = real_vector + ring + assumes mult_scaleR_left [simp]: "scaleR a x \<^loc>* y = scaleR a (x \<^loc>* y)" and mult_scaleR_right [simp]: "x \<^loc>* scaleR a y = scaleR a (x \<^loc>* y)" class real_algebra_1 = real_algebra + ring_1 class real_div_algebra = real_algebra_1 + division_ring class real_field = real_div_algebra + field instance real :: real_field apply (intro_classes, unfold real_scaleR_def) apply (rule right_distrib) apply (rule left_distrib) apply (rule mult_assoc [symmetric]) apply (rule mult_1_left) apply (rule mult_assoc) apply (rule mult_left_commute) done lemma scaleR_left_commute: fixes x :: "'a::real_vector" shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)" by (simp add: mult_commute) interpretation scaleR_left: additive ["(\<lambda>a. scaleR a x::'a::real_vector)"] by unfold_locales (rule scaleR_left_distrib) interpretation scaleR_right: additive ["(\<lambda>x. scaleR a x::'a::real_vector)"] by unfold_locales (rule scaleR_right_distrib) lemmas scaleR_zero_left [simp] = scaleR_left.zero lemmas scaleR_zero_right [simp] = scaleR_right.zero lemmas scaleR_minus_left [simp] = scaleR_left.minus lemmas scaleR_minus_right [simp] = scaleR_right.minus lemmas scaleR_left_diff_distrib = scaleR_left.diff lemmas scaleR_right_diff_distrib = scaleR_right.diff lemma scaleR_eq_0_iff [simp]: fixes x :: "'a::real_vector" shows "(scaleR a x = 0) = (a = 0 \<or> x = 0)" proof cases assume "a = 0" thus ?thesis by simp next assume anz [simp]: "a \<noteq> 0" { assume "scaleR a x = 0" hence "scaleR (inverse a) (scaleR a x) = 0" by simp hence "x = 0" by simp } thus ?thesis by force qed lemma scaleR_left_imp_eq: fixes x y :: "'a::real_vector" shows "\<lbrakk>a \<noteq> 0; scaleR a x = scaleR a y\<rbrakk> \<Longrightarrow> x = y" proof - assume nonzero: "a \<noteq> 0" assume "scaleR a x = scaleR a y" hence "scaleR a (x - y) = 0" by (simp add: scaleR_right_diff_distrib) hence "x - y = 0" by (simp add: nonzero) thus "x = y" by simp qed lemma scaleR_right_imp_eq: fixes x y :: "'a::real_vector" shows "\<lbrakk>x \<noteq> 0; scaleR a x = scaleR b x\<rbrakk> \<Longrightarrow> a = b" proof - assume nonzero: "x \<noteq> 0" assume "scaleR a x = scaleR b x" hence "scaleR (a - b) x = 0" by (simp add: scaleR_left_diff_distrib) hence "a - b = 0" by (simp add: nonzero) thus "a = b" by simp qed lemma scaleR_cancel_left: fixes x y :: "'a::real_vector" shows "(scaleR a x = scaleR a y) = (x = y \<or> a = 0)" by (auto intro: scaleR_left_imp_eq) lemma scaleR_cancel_right: fixes x y :: "'a::real_vector" shows "(scaleR a x = scaleR b x) = (a = b \<or> x = 0)" by (auto intro: scaleR_right_imp_eq) lemma nonzero_inverse_scaleR_distrib: fixes x :: "'a::real_div_algebra" shows "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" by (rule inverse_unique, simp) lemma inverse_scaleR_distrib: fixes x :: "'a::{real_div_algebra,division_by_zero}" shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" apply (case_tac "a = 0", simp) apply (case_tac "x = 0", simp) apply (erule (1) nonzero_inverse_scaleR_distrib) done subsection {* Embedding of the Reals into any @{text real_algebra_1}: @{term of_real} *} definition of_real :: "real \<Rightarrow> 'a::real_algebra_1" where "of_real r = scaleR r 1" lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" by (simp add: of_real_def) lemma of_real_0 [simp]: "of_real 0 = 0" by (simp add: of_real_def) lemma of_real_1 [simp]: "of_real 1 = 1" by (simp add: of_real_def) lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" by (simp add: of_real_def scaleR_left_distrib) lemma of_real_minus [simp]: "of_real (- x) = - of_real x" by (simp add: of_real_def) lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" by (simp add: of_real_def scaleR_left_diff_distrib) lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" by (simp add: of_real_def mult_commute) lemma nonzero_of_real_inverse: "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = inverse (of_real x :: 'a::real_div_algebra)" by (simp add: of_real_def nonzero_inverse_scaleR_distrib) lemma of_real_inverse [simp]: "of_real (inverse x) = inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})" by (simp add: of_real_def inverse_scaleR_distrib) lemma nonzero_of_real_divide: "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = (of_real x / of_real y :: 'a::real_field)" by (simp add: divide_inverse nonzero_of_real_inverse) lemma of_real_divide [simp]: "of_real (x / y) = (of_real x / of_real y :: 'a::{real_field,division_by_zero})" by (simp add: divide_inverse) lemma of_real_power [simp]: "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" by (induct n) (simp_all add: power_Suc) lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" by (simp add: of_real_def scaleR_cancel_right) lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" proof fix r show "of_real r = id r" by (simp add: of_real_def) qed text{*Collapse nested embeddings*} lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" by (induct n) auto lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" by (cases z rule: int_diff_cases, simp) lemma of_real_number_of_eq: "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})" by (simp add: number_of_eq) text{*Every real algebra has characteristic zero*} instance real_algebra_1 < ring_char_0 proof fix m n :: nat have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)" by (simp only: of_real_eq_iff of_nat_eq_iff) thus "(of_nat m = (of_nat n::'a)) = (m = n)" by (simp only: of_real_of_nat_eq) qed subsection {* The Set of Real Numbers *} definition Reals :: "'a::real_algebra_1 set" where "Reals \<equiv> range of_real" notation (xsymbols) Reals ("\<real>") lemma Reals_of_real [simp]: "of_real r \<in> Reals" by (simp add: Reals_def) lemma Reals_of_int [simp]: "of_int z \<in> Reals" by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) lemma Reals_of_nat [simp]: "of_nat n \<in> Reals" by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) lemma Reals_number_of [simp]: "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals" by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) lemma Reals_0 [simp]: "0 \<in> Reals" apply (unfold Reals_def) apply (rule range_eqI) apply (rule of_real_0 [symmetric]) done lemma Reals_1 [simp]: "1 \<in> Reals" apply (unfold Reals_def) apply (rule range_eqI) apply (rule of_real_1 [symmetric]) done lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_add [symmetric]) done lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_minus [symmetric]) done lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_diff [symmetric]) done lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_mult [symmetric]) done lemma nonzero_Reals_inverse: fixes a :: "'a::real_div_algebra" shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (erule nonzero_of_real_inverse [symmetric]) done lemma Reals_inverse [simp]: fixes a :: "'a::{real_div_algebra,division_by_zero}" shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_inverse [symmetric]) done lemma nonzero_Reals_divide: fixes a b :: "'a::real_field" shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (erule nonzero_of_real_divide [symmetric]) done lemma Reals_divide [simp]: fixes a b :: "'a::{real_field,division_by_zero}" shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_divide [symmetric]) done lemma Reals_power [simp]: fixes a :: "'a::{real_algebra_1,recpower}" shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals" apply (auto simp add: Reals_def) apply (rule range_eqI) apply (rule of_real_power [symmetric]) done lemma Reals_cases [cases set: Reals]: assumes "q \<in> \<real>" obtains (of_real) r where "q = of_real r" unfolding Reals_def proof - from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def . then obtain r where "q = of_real r" .. then show thesis .. qed lemma Reals_induct [case_names of_real, induct set: Reals]: "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" by (rule Reals_cases) auto subsection {* Real normed vector spaces *} class norm = type + fixes norm :: "'a \<Rightarrow> real" instance real :: norm real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>" .. class sgn_div_norm = scaleR + norm + sgn + assumes sgn_div_norm: "sgn x = x \<^loc>/# norm x" class real_normed_vector = real_vector + sgn_div_norm + assumes norm_ge_zero [simp]: "0 \<le> norm x" and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = \<^loc>0" and norm_triangle_ineq: "norm (x \<^loc>+ y) \<le> norm x + norm y" and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x" class real_normed_algebra = real_algebra + real_normed_vector + assumes norm_mult_ineq: "norm (x \<^loc>* y) \<le> norm x * norm y" class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + assumes norm_one [simp]: "norm \<^loc>1 = 1" class real_normed_div_algebra = real_div_algebra + real_normed_vector + assumes norm_mult: "norm (x \<^loc>* y) = norm x * norm y" class real_normed_field = real_field + real_normed_div_algebra instance real_normed_div_algebra < real_normed_algebra_1 proof fix x y :: 'a show "norm (x * y) \<le> norm x * norm y" by (simp add: norm_mult) next have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" by (rule norm_mult) thus "norm (1::'a) = 1" by simp qed instance real :: real_normed_field apply (intro_classes, unfold real_norm_def real_scaleR_def) apply (simp add: real_sgn_def) apply (rule abs_ge_zero) apply (rule abs_eq_0) apply (rule abs_triangle_ineq) apply (rule abs_mult) apply (rule abs_mult) done lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" by simp lemma zero_less_norm_iff [simp]: fixes x :: "'a::real_normed_vector" shows "(0 < norm x) = (x \<noteq> 0)" by (simp add: order_less_le) lemma norm_not_less_zero [simp]: fixes x :: "'a::real_normed_vector" shows "\<not> norm x < 0" by (simp add: linorder_not_less) lemma norm_le_zero_iff [simp]: fixes x :: "'a::real_normed_vector" shows "(norm x \<le> 0) = (x = 0)" by (simp add: order_le_less) lemma norm_minus_cancel [simp]: fixes x :: "'a::real_normed_vector" shows "norm (- x) = norm x" proof - have "norm (- x) = norm (scaleR (- 1) x)" by (simp only: scaleR_minus_left scaleR_one) also have "\<dots> = \<bar>- 1\<bar> * norm x" by (rule norm_scaleR) finally show ?thesis by simp qed lemma norm_minus_commute: fixes a b :: "'a::real_normed_vector" shows "norm (a - b) = norm (b - a)" proof - have "norm (- (b - a)) = norm (b - a)" by (rule norm_minus_cancel) thus ?thesis by simp qed lemma norm_triangle_ineq2: fixes a b :: "'a::real_normed_vector" shows "norm a - norm b \<le> norm (a - b)" proof - have "norm (a - b + b) \<le> norm (a - b) + norm b" by (rule norm_triangle_ineq) thus ?thesis by simp qed lemma norm_triangle_ineq3: fixes a b :: "'a::real_normed_vector" shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" apply (subst abs_le_iff) apply auto apply (rule norm_triangle_ineq2) apply (subst norm_minus_commute) apply (rule norm_triangle_ineq2) done lemma norm_triangle_ineq4: fixes a b :: "'a::real_normed_vector" shows "norm (a - b) \<le> norm a + norm b" proof - have "norm (a + - b) \<le> norm a + norm (- b)" by (rule norm_triangle_ineq) thus ?thesis by (simp only: diff_minus norm_minus_cancel) qed lemma norm_diff_ineq: fixes a b :: "'a::real_normed_vector" shows "norm a - norm b \<le> norm (a + b)" proof - have "norm a - norm (- b) \<le> norm (a - - b)" by (rule norm_triangle_ineq2) thus ?thesis by simp qed lemma norm_diff_triangle_ineq: fixes a b c d :: "'a::real_normed_vector" shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" proof - have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" by (simp add: diff_minus add_ac) also have "\<dots> \<le> norm (a - c) + norm (b - d)" by (rule norm_triangle_ineq) finally show ?thesis . qed lemma abs_norm_cancel [simp]: fixes a :: "'a::real_normed_vector" shows "\<bar>norm a\<bar> = norm a" by (rule abs_of_nonneg [OF norm_ge_zero]) lemma norm_add_less: fixes x y :: "'a::real_normed_vector" shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) lemma norm_mult_less: fixes x y :: "'a::real_normed_algebra" shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" apply (rule order_le_less_trans [OF norm_mult_ineq]) apply (simp add: mult_strict_mono') done lemma norm_of_real [simp]: "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" unfolding of_real_def by (simp add: norm_scaleR) lemma norm_number_of [simp]: "norm (number_of w::'a::{number_ring,real_normed_algebra_1}) = \<bar>number_of w\<bar>" by (subst of_real_number_of_eq [symmetric], rule norm_of_real) lemma norm_of_int [simp]: "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" by (subst of_real_of_int_eq [symmetric], rule norm_of_real) lemma norm_of_nat [simp]: "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" apply (subst of_real_of_nat_eq [symmetric]) apply (subst norm_of_real, simp) done lemma nonzero_norm_inverse: fixes a :: "'a::real_normed_div_algebra" shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" apply (rule inverse_unique [symmetric]) apply (simp add: norm_mult [symmetric]) done lemma norm_inverse: fixes a :: "'a::{real_normed_div_algebra,division_by_zero}" shows "norm (inverse a) = inverse (norm a)" apply (case_tac "a = 0", simp) apply (erule nonzero_norm_inverse) done lemma nonzero_norm_divide: fixes a b :: "'a::real_normed_field" shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" by (simp add: divide_inverse norm_mult nonzero_norm_inverse) lemma norm_divide: fixes a b :: "'a::{real_normed_field,division_by_zero}" shows "norm (a / b) = norm a / norm b" by (simp add: divide_inverse norm_mult norm_inverse) lemma norm_power_ineq: fixes x :: "'a::{real_normed_algebra_1,recpower}" shows "norm (x ^ n) \<le> norm x ^ n" proof (induct n) case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp next case (Suc n) have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" by (rule norm_mult_ineq) also from Suc have "\<dots> \<le> norm x * norm x ^ n" using norm_ge_zero by (rule mult_left_mono) finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" by (simp add: power_Suc) qed lemma norm_power: fixes x :: "'a::{real_normed_div_algebra,recpower}" shows "norm (x ^ n) = norm x ^ n" by (induct n) (simp_all add: power_Suc norm_mult) subsection {* Sign function *} lemma norm_sgn: "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" by (simp add: sgn_div_norm norm_scaleR) lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" by (simp add: sgn_div_norm) lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" by (simp add: sgn_div_norm) lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" by (simp add: sgn_div_norm) lemma sgn_scaleR: "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" by (simp add: sgn_div_norm norm_scaleR mult_ac) lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" by (simp add: sgn_div_norm) lemma sgn_of_real: "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" unfolding of_real_def by (simp only: sgn_scaleR sgn_one) lemma sgn_mult: fixes x y :: "'a::real_normed_div_algebra" shows "sgn (x * y) = sgn x * sgn y" by (simp add: sgn_div_norm norm_mult mult_commute) lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>" by (simp add: sgn_div_norm divide_inverse) lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1" unfolding real_sgn_eq by simp lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1" unfolding real_sgn_eq by simp subsection {* Bounded Linear and Bilinear Operators *} locale bounded_linear = additive + constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" assumes scaleR: "f (scaleR r x) = scaleR r (f x)" assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" lemma (in bounded_linear) pos_bounded: "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" proof - obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" using bounded by fast show ?thesis proof (intro exI impI conjI allI) show "0 < max 1 K" by (rule order_less_le_trans [OF zero_less_one le_maxI1]) next fix x have "norm (f x) \<le> norm x * K" using K . also have "\<dots> \<le> norm x * max 1 K" by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) finally show "norm (f x) \<le> norm x * max 1 K" . qed qed lemma (in bounded_linear) nonneg_bounded: "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" proof - from pos_bounded show ?thesis by (auto intro: order_less_imp_le) qed locale bounded_bilinear = fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] \<Rightarrow> 'c::real_normed_vector" (infixl "**" 70) assumes add_left: "prod (a + a') b = prod a b + prod a' b" assumes add_right: "prod a (b + b') = prod a b + prod a b'" assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" lemma (in bounded_bilinear) pos_bounded: "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" apply (cut_tac bounded, erule exE) apply (rule_tac x="max 1 K" in exI, safe) apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) apply (drule spec, drule spec, erule order_trans) apply (rule mult_left_mono [OF le_maxI2]) apply (intro mult_nonneg_nonneg norm_ge_zero) done lemma (in bounded_bilinear) nonneg_bounded: "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" proof - from pos_bounded show ?thesis by (auto intro: order_less_imp_le) qed lemma (in bounded_bilinear) additive_right: "additive (\<lambda>b. prod a b)" by (rule additive.intro, rule add_right) lemma (in bounded_bilinear) additive_left: "additive (\<lambda>a. prod a b)" by (rule additive.intro, rule add_left) lemma (in bounded_bilinear) zero_left: "prod 0 b = 0" by (rule additive.zero [OF additive_left]) lemma (in bounded_bilinear) zero_right: "prod a 0 = 0" by (rule additive.zero [OF additive_right]) lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b" by (rule additive.minus [OF additive_left]) lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b" by (rule additive.minus [OF additive_right]) lemma (in bounded_bilinear) diff_left: "prod (a - a') b = prod a b - prod a' b" by (rule additive.diff [OF additive_left]) lemma (in bounded_bilinear) diff_right: "prod a (b - b') = prod a b - prod a b'" by (rule additive.diff [OF additive_right]) lemma (in bounded_bilinear) bounded_linear_left: "bounded_linear (\<lambda>a. a ** b)" apply (unfold_locales) apply (rule add_left) apply (rule scaleR_left) apply (cut_tac bounded, safe) apply (rule_tac x="norm b * K" in exI) apply (simp add: mult_ac) done lemma (in bounded_bilinear) bounded_linear_right: "bounded_linear (\<lambda>b. a ** b)" apply (unfold_locales) apply (rule add_right) apply (rule scaleR_right) apply (cut_tac bounded, safe) apply (rule_tac x="norm a * K" in exI) apply (simp add: mult_ac) done lemma (in bounded_bilinear) prod_diff_prod: "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" by (simp add: diff_left diff_right) interpretation mult: bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"] apply (rule bounded_bilinear.intro) apply (rule left_distrib) apply (rule right_distrib) apply (rule mult_scaleR_left) apply (rule mult_scaleR_right) apply (rule_tac x="1" in exI) apply (simp add: norm_mult_ineq) done interpretation mult_left: bounded_linear ["(\<lambda>x::'a::real_normed_algebra. x * y)"] by (rule mult.bounded_linear_left) interpretation mult_right: bounded_linear ["(\<lambda>y::'a::real_normed_algebra. x * y)"] by (rule mult.bounded_linear_right) interpretation divide: bounded_linear ["(\<lambda>x::'a::real_normed_field. x / y)"] unfolding divide_inverse by (rule mult.bounded_linear_left) interpretation scaleR: bounded_bilinear ["scaleR"] apply (rule bounded_bilinear.intro) apply (rule scaleR_left_distrib) apply (rule scaleR_right_distrib) apply simp apply (rule scaleR_left_commute) apply (rule_tac x="1" in exI) apply (simp add: norm_scaleR) done interpretation scaleR_left: bounded_linear ["\<lambda>r. scaleR r x"] by (rule scaleR.bounded_linear_left) interpretation scaleR_right: bounded_linear ["\<lambda>x. scaleR r x"] by (rule scaleR.bounded_linear_right) interpretation of_real: bounded_linear ["\<lambda>r. of_real r"] unfolding of_real_def by (rule scaleR.bounded_linear_left) end