tuned signature: pcpodef_proof, pcpodef_proof_cmd etc.;
more antiquotations;
explicit Theory.requires;
adapted to recent changes in ~~/src/HOL/Tools/typedef_package.ML;
misc tuning and simplification;
(* Title: Tools/random_word.ML
ID: $Id$
Author: Makarius
Simple generator for pseudo-random numbers, using unboxed word
arithmetic only. Unprotected concurrency introduces some true
randomness.
*)
signature RANDOM_WORD =
sig
val max_word: word
val step: word -> word
val next_word: unit -> word
val next_bool: unit -> bool
val next_int: int -> int -> int
val next_real: unit -> real
val pick_any: 'a list -> 'a
val pick_weighted: (int * 'a) list -> 'a
end;
structure RandomWord: RANDOM_WORD =
struct
(* random words: 0w0 <= result <= max_word *)
(*minimum length of unboxed words on all supported ML platforms*)
val _ = Word.wordSize >= 30
orelse raise Fail ("Bad platform word size");
val max_word = 0wx3FFFFFFF;
val top_bit = 0wx20000000;
(*multiplier according to Borosh and Niederreiter (for modulus = 2^30),
see http://random.mat.sbg.ac.at/~charly/server/server.html*)
val a = 0w777138309;
fun step x = Word.andb (a * x + 0w1, max_word);
local val rand = ref 0w1
in fun next_word () = (change rand step; ! rand) end;
(*NB: higher bits are more random than lower ones*)
fun next_bool () = Word.andb (next_word (), top_bit) = 0w0;
(* random integers: i <= result <= j *)
val max_int = Word.toInt max_word;
fun next_int i j =
let val k = j - i in
if k < 0 orelse k > max_int then raise Fail ("next_int: out of range")
else if k < max_int then i + Word.toInt (Word.mod (next_word (), Word.fromInt (k + 1)))
else i + Word.toInt (next_word ())
end;
(* random reals: 0.0 <= result < 1.0 *)
val scaling = real max_int + 1.0;
fun next_real () = real (Word.toInt (next_word ())) / scaling;
(* random list elements *)
fun pick_any [] = raise Empty
| pick_any xs = nth xs (next_int 0 (length xs - 1));
fun pick_weighted xs =
let
val total = fold (fn (k, _) => fn i =>
if k < 0 then raise Fail ("Bad weight: " ^ string_of_int k) else k + i) xs 0;
fun pick n ((k, x) :: xs) =
if n <= k then x else pick (n - k) xs
| pick _ [] = raise Empty;
in if total = 0 then raise Empty else pick (next_int 1 total) xs end;
end;