(* Title: Pure/Isar/proof_context.ML
Author: Markus Wenzel, TU Muenchen
The key concept of Isar proof contexts: elevates primitive local
reasoning Gamma |- phi to a structured concept, with generic context
elements. See also structure Variable and Assumption.
*)
signature PROOF_CONTEXT =
sig
val theory_of: Proof.context -> theory
val init_global: theory -> Proof.context
val get_global: {long: bool} -> theory -> string -> Proof.context
type mode
val mode_default: mode
val mode_pattern: mode
val mode_schematic: mode
val mode_abbrev: mode
val set_mode: mode -> Proof.context -> Proof.context
val get_mode: Proof.context -> mode
val restore_mode: Proof.context -> Proof.context -> Proof.context
val abbrev_mode: Proof.context -> bool
val syn_of: Proof.context -> Syntax.syntax
val tsig_of: Proof.context -> Type.tsig
val set_defsort: sort -> Proof.context -> Proof.context
val default_sort: Proof.context -> indexname -> sort
val arity_sorts: Proof.context -> string -> sort -> sort list
val consts_of: Proof.context -> Consts.T
val set_syntax_mode: Syntax.mode -> Proof.context -> Proof.context
val restore_syntax_mode: Proof.context -> Proof.context -> Proof.context
val map_naming: (Name_Space.naming -> Name_Space.naming) -> Proof.context -> Proof.context
val naming_of: Proof.context -> Name_Space.naming
val restore_naming: Proof.context -> Proof.context -> Proof.context
val full_name: Proof.context -> binding -> string
val get_scope: Proof.context -> Binding.scope option
val new_scope: Proof.context -> Binding.scope * Proof.context
val private_scope: Binding.scope -> Proof.context -> Proof.context
val private: Position.T -> Proof.context -> Proof.context
val qualified_scope: Binding.scope -> Proof.context -> Proof.context
val qualified: Position.T -> Proof.context -> Proof.context
val concealed: Proof.context -> Proof.context
val class_space: Proof.context -> Name_Space.T
val type_space: Proof.context -> Name_Space.T
val const_space: Proof.context -> Name_Space.T
val defs_context: Proof.context -> Defs.context
val intern_class: Proof.context -> xstring -> string
val intern_type: Proof.context -> xstring -> string
val intern_const: Proof.context -> xstring -> string
val extern_class: Proof.context -> string -> xstring
val markup_class: Proof.context -> string -> string
val pretty_class: Proof.context -> string -> Pretty.T
val extern_type: Proof.context -> string -> xstring
val markup_type: Proof.context -> string -> string
val pretty_type: Proof.context -> string -> Pretty.T
val extern_const: Proof.context -> string -> xstring
val markup_const: Proof.context -> string -> string
val pretty_const: Proof.context -> string -> Pretty.T
val transfer: theory -> Proof.context -> Proof.context
val transfer_facts: theory -> Proof.context -> Proof.context
val background_theory: (theory -> theory) -> Proof.context -> Proof.context
val background_theory_result: (theory -> 'a * theory) -> Proof.context -> 'a * Proof.context
val facts_of: Proof.context -> Facts.T
val facts_of_fact: Proof.context -> string -> Facts.T
val markup_extern_fact: Proof.context -> string -> Markup.T list * xstring
val augment: term -> Proof.context -> Proof.context
val print_name: Proof.context -> string -> string
val pretty_name: Proof.context -> string -> Pretty.T
val pretty_term_abbrev: Proof.context -> term -> Pretty.T
val pretty_fact: Proof.context -> string * thm list -> Pretty.T
val check_class: Proof.context -> xstring * Position.T -> class * Position.report list
val read_class: Proof.context -> string -> class
val read_typ: Proof.context -> string -> typ
val read_typ_syntax: Proof.context -> string -> typ
val read_typ_abbrev: Proof.context -> string -> typ
val cert_typ: Proof.context -> typ -> typ
val cert_typ_syntax: Proof.context -> typ -> typ
val cert_typ_abbrev: Proof.context -> typ -> typ
val infer_type: Proof.context -> string * typ -> typ
val inferred_param: string -> Proof.context -> (string * typ) * Proof.context
val inferred_fixes: Proof.context -> (string * typ) list * Proof.context
val check_type_name: {proper: bool, strict: bool} -> Proof.context ->
xstring * Position.T -> typ * Position.report list
val read_type_name: {proper: bool, strict: bool} -> Proof.context -> string -> typ
val consts_completion_message: Proof.context -> xstring * Position.T list -> string
val check_const: {proper: bool, strict: bool} -> Proof.context ->
xstring * Position.T list -> term * Position.report list
val read_const: {proper: bool, strict: bool} -> Proof.context -> string -> term
val read_arity: Proof.context -> xstring * string list * string -> arity
val cert_arity: Proof.context -> arity -> arity
val allow_dummies: Proof.context -> Proof.context
val prepare_sortsT: Proof.context -> typ list -> string list * typ list
val prepare_sorts: Proof.context -> term list -> string list * term list
val check_tfree: Proof.context -> string * sort -> string * sort
val read_term_pattern: Proof.context -> string -> term
val read_term_schematic: Proof.context -> string -> term
val read_term_abbrev: Proof.context -> string -> term
val show_abbrevs: bool Config.T
val expand_abbrevs: Proof.context -> term -> term
val cert_term: Proof.context -> term -> term
val cert_prop: Proof.context -> term -> term
val def_type: Proof.context -> indexname -> typ option
val standard_typ_check: Proof.context -> typ list -> typ list
val standard_term_check_finish: Proof.context -> term list -> term list
val standard_term_uncheck: Proof.context -> term list -> term list
val export_: {goal: bool} -> Proof.context -> Proof.context -> thm list -> thm list
val export: Proof.context -> Proof.context -> thm list -> thm list
val export_goal: Proof.context -> Proof.context -> thm list -> thm list
val export_morphism: Proof.context -> Proof.context -> morphism
val auto_bind_goal: term list -> Proof.context -> Proof.context
val auto_bind_facts: term list -> Proof.context -> Proof.context
val simult_matches: Proof.context -> term * term list -> (indexname * term) list
val maybe_bind_term: indexname * term option -> Proof.context -> Proof.context
val bind_term: indexname * term -> Proof.context -> Proof.context
val cert_propp: Proof.context -> (term * term list) list list ->
(term list list * (indexname * term) list)
val read_propp: Proof.context -> (string * string list) list list ->
(term list list * (indexname * term) list)
val fact_tac: Proof.context -> thm list -> int -> tactic
val some_fact_tac: Proof.context -> int -> tactic
val lookup_fact: Proof.context -> string -> {dynamic: bool, thms: thm list} option
val dynamic_facts_dummy: bool Config.T
val get_fact_generic: Context.generic -> Facts.ref -> string option * thm list
val get_fact: Proof.context -> Facts.ref -> thm list
val get_fact_single: Proof.context -> Facts.ref -> thm
val get_thms: Proof.context -> xstring -> thm list
val get_thm: Proof.context -> xstring -> thm
val is_stmt: Proof.context -> bool
val set_stmt: bool -> Proof.context -> Proof.context
val restore_stmt: Proof.context -> Proof.context -> Proof.context
val add_thms_dynamic: binding * (Context.generic -> thm list) ->
Proof.context -> string * Proof.context
val add_thms_lazy: string -> (binding * thm list lazy) -> Proof.context -> Proof.context
val note_thms: string -> Thm.binding * (thm list * attribute list) list ->
Proof.context -> (string * thm list) * Proof.context
val note_thmss: string -> (Thm.binding * (thm list * attribute list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val put_thms: bool -> string * thm list option -> Proof.context -> Proof.context
val alias_fact: binding -> string -> Proof.context -> Proof.context
val read_var: binding * string option * mixfix -> Proof.context ->
(binding * typ option * mixfix) * Proof.context
val cert_var: binding * typ option * mixfix -> Proof.context ->
(binding * typ option * mixfix) * Proof.context
val add_fixes: (binding * typ option * mixfix) list -> Proof.context ->
string list * Proof.context
val add_fixes_cmd: (binding * string option * mixfix) list -> Proof.context ->
string list * Proof.context
val add_assms: Assumption.export ->
(Thm.binding * (term * term list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val add_assms_cmd: Assumption.export ->
(Thm.binding * (string * string list) list) list ->
Proof.context -> (string * thm list) list * Proof.context
val dest_cases: Proof.context option -> Proof.context -> (string * Rule_Cases.T) list
val update_cases: (string * Rule_Cases.T option) list -> Proof.context -> Proof.context
val apply_case: Rule_Cases.T -> Proof.context -> (string * term list) list * Proof.context
val check_case: Proof.context -> bool ->
string * Position.T -> binding option list -> Rule_Cases.T
val check_syntax_const: Proof.context -> string * Position.T -> string
val syntax: bool -> Syntax.mode -> (string * typ * mixfix) list ->
Proof.context -> Proof.context
val generic_syntax: bool -> Syntax.mode -> (string * typ * mixfix) list ->
Context.generic -> Context.generic
val type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> Proof.context -> Proof.context
val notation: bool -> Syntax.mode -> (term * mixfix) list -> Proof.context -> Proof.context
val generic_type_notation: bool -> Syntax.mode -> (typ * mixfix) list -> morphism ->
Context.generic -> Context.generic
val generic_notation: bool -> Syntax.mode -> (term * mixfix) list -> morphism ->
Context.generic -> Context.generic
val type_alias: binding -> string -> Proof.context -> Proof.context
val const_alias: binding -> string -> Proof.context -> Proof.context
val add_const_constraint: string * typ option -> Proof.context -> Proof.context
val add_abbrev: string -> binding * term -> Proof.context -> (term * term) * Proof.context
val revert_abbrev: string -> string -> Proof.context -> Proof.context
val generic_add_abbrev: string -> binding * term -> Context.generic ->
(term * term) * Context.generic
val generic_revert_abbrev: string -> string -> Context.generic -> Context.generic
type stmt =
{vars: ((binding * typ option * mixfix) * (string * term)) list,
propss: term list list,
binds: (indexname * term) list,
result_binds: (indexname * term) list}
val cert_stmt: (binding * typ option * mixfix) list -> (term * term list) list list ->
Proof.context -> stmt * Proof.context
val read_stmt: (binding * string option * mixfix) list -> (string * string list) list list ->
Proof.context -> stmt * Proof.context
type statement =
{fixes: (string * term) list,
assumes: term list list,
shows: term list list,
result_binds: (indexname * term option) list,
text: term,
result_text: term}
val cert_statement: (binding * typ option * mixfix) list ->
(term * term list) list list -> (term * term list) list list -> Proof.context ->
statement * Proof.context
val read_statement: (binding * string option * mixfix) list ->
(string * string list) list list -> (string * string list) list list -> Proof.context ->
statement * Proof.context
val print_syntax: Proof.context -> unit
val print_abbrevs: bool -> Proof.context -> unit
val pretty_term_bindings: Proof.context -> Pretty.T list
val pretty_local_facts: bool -> Proof.context -> Pretty.T list
val print_local_facts: bool -> Proof.context -> unit
val pretty_cases: Proof.context -> Pretty.T list
val print_cases_proof: Proof.context -> Proof.context -> string
val debug: bool Config.T
val verbose: bool Config.T
val pretty_ctxt: Proof.context -> Pretty.T list
val pretty_context: Proof.context -> Pretty.T list
end;
structure Proof_Context: PROOF_CONTEXT =
struct
val theory_of = Proof_Context.theory_of;
val init_global = Proof_Context.init_global;
val get_global = Proof_Context.get_global;
(** inner syntax mode **)
datatype mode =
Mode of
{pattern: bool, (*pattern binding schematic variables*)
schematic: bool, (*term referencing loose schematic variables*)
abbrev: bool}; (*abbrev mode -- no normalization*)
fun make_mode (pattern, schematic, abbrev) =
Mode {pattern = pattern, schematic = schematic, abbrev = abbrev};
val mode_default = make_mode (false, false, false);
val mode_pattern = make_mode (true, false, false);
val mode_schematic = make_mode (false, true, false);
val mode_abbrev = make_mode (false, false, true);
(** Isar proof context information **)
type cases = Rule_Cases.T Name_Space.table;
val empty_cases: cases = Name_Space.empty_table Markup.caseN;
datatype data =
Data of
{mode: mode, (*inner syntax mode*)
syntax: Local_Syntax.T, (*local syntax*)
tsig: Type.tsig * Type.tsig, (*local/global type signature -- local name space / defsort only*)
consts: Consts.T * Consts.T, (*local/global consts -- local name space / abbrevs only*)
facts: Facts.T, (*local facts, based on initial global facts*)
cases: cases}; (*named case contexts*)
fun make_data (mode, syntax, tsig, consts, facts, cases) =
Data {mode = mode, syntax = syntax, tsig = tsig, consts = consts, facts = facts, cases = cases};
structure Data = Proof_Data
(
type T = data;
fun init thy =
make_data (mode_default,
Local_Syntax.init thy,
(Type.change_ignore (Sign.tsig_of thy), Sign.tsig_of thy),
(Consts.change_ignore (Sign.consts_of thy), Sign.consts_of thy),
Global_Theory.facts_of thy,
empty_cases);
);
fun rep_data ctxt = Data.get ctxt |> (fn Data rep => rep);
fun map_data_result f ctxt =
let
val Data {mode, syntax, tsig, consts, facts, cases} = Data.get ctxt;
val (res, data') = f (mode, syntax, tsig, consts, facts, cases) ||> make_data;
in (res, Data.put data' ctxt) end;
fun map_data f = snd o map_data_result (pair () o f);
fun set_mode mode = map_data (fn (_, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, consts, facts, cases));
fun map_syntax f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, f syntax, tsig, consts, facts, cases));
fun map_syntax_idents f ctxt =
let val (opt_idents', syntax') = f (#syntax (rep_data ctxt)) in
ctxt
|> map_syntax (K syntax')
|> (case opt_idents' of NONE => I | SOME idents' => Syntax_Trans.put_idents idents')
end;
fun map_tsig f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, f tsig, consts, facts, cases));
fun map_consts f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, f consts, facts, cases));
fun map_facts_result f =
map_data_result (fn (mode, syntax, tsig, consts, facts, cases) =>
let val (res, facts') = f facts
in (res, (mode, syntax, tsig, consts, facts', cases)) end);
fun map_facts f = snd o map_facts_result (pair () o f);
fun map_cases f =
map_data (fn (mode, syntax, tsig, consts, facts, cases) =>
(mode, syntax, tsig, consts, facts, f cases));
val get_mode = #mode o rep_data;
val restore_mode = set_mode o get_mode;
val abbrev_mode = get_mode #> (fn Mode {abbrev, ...} => abbrev);
val syntax_of = #syntax o rep_data;
val syn_of = Local_Syntax.syn_of o syntax_of;
val set_syntax_mode = map_syntax o Local_Syntax.set_mode;
val restore_syntax_mode = map_syntax o Local_Syntax.restore_mode o syntax_of;
val tsig_of = #1 o #tsig o rep_data;
val set_defsort = map_tsig o apfst o Type.set_defsort;
fun default_sort ctxt = the_default (Type.defaultS (tsig_of ctxt)) o Variable.def_sort ctxt;
fun arity_sorts ctxt = Type.arity_sorts (Context.Proof ctxt) (tsig_of ctxt);
val consts_of = #1 o #consts o rep_data;
val cases_of = #cases o rep_data;
(* naming *)
val naming_of = Name_Space.naming_of o Context.Proof;
val map_naming = Context.proof_map o Name_Space.map_naming;
val restore_naming = map_naming o K o naming_of;
val full_name = Name_Space.full_name o naming_of;
val get_scope = Name_Space.get_scope o naming_of;
fun new_scope ctxt =
let
val (scope, naming') = Name_Space.new_scope (naming_of ctxt);
val ctxt' = map_naming (K naming') ctxt;
in (scope, ctxt') end;
val private_scope = map_naming o Name_Space.private_scope;
val private = map_naming o Name_Space.private;
val qualified_scope = map_naming o Name_Space.qualified_scope;
val qualified = map_naming o Name_Space.qualified;
val concealed = map_naming Name_Space.concealed;
(* name spaces *)
val class_space = Type.class_space o tsig_of;
val type_space = Type.type_space o tsig_of;
val const_space = Consts.space_of o consts_of;
fun defs_context ctxt = (ctxt, (const_space ctxt, type_space ctxt));
val intern_class = Name_Space.intern o class_space;
val intern_type = Name_Space.intern o type_space;
val intern_const = Name_Space.intern o const_space;
fun extern_class ctxt = Name_Space.extern ctxt (class_space ctxt);
fun extern_type ctxt = Name_Space.extern ctxt (type_space ctxt);
fun extern_const ctxt = Name_Space.extern ctxt (const_space ctxt);
fun markup_class ctxt c = Name_Space.markup_extern ctxt (class_space ctxt) c |-> Markup.markup;
fun markup_type ctxt c = Name_Space.markup_extern ctxt (type_space ctxt) c |-> Markup.markup;
fun markup_const ctxt c = Name_Space.markup_extern ctxt (const_space ctxt) c |-> Markup.markup;
fun pretty_class ctxt c = Name_Space.markup_extern ctxt (class_space ctxt) c |> Pretty.mark_str;
fun pretty_type ctxt c = Name_Space.markup_extern ctxt (type_space ctxt) c |> Pretty.mark_str;
fun pretty_const ctxt c = Name_Space.markup_extern ctxt (const_space ctxt) c |> Pretty.mark_str;
(* theory transfer *)
fun transfer_syntax thy ctxt = ctxt |>
map_syntax (Local_Syntax.rebuild thy) |>
map_tsig (fn tsig as (local_tsig, global_tsig) =>
let val thy_tsig = Sign.tsig_of thy in
if Type.eq_tsig (thy_tsig, global_tsig) then tsig
else (Type.merge_tsig (Context.Proof ctxt) (local_tsig, thy_tsig), thy_tsig) (*historic merge order*)
end) |>
map_consts (fn consts as (local_consts, global_consts) =>
let val thy_consts = Sign.consts_of thy in
if Consts.eq_consts (thy_consts, global_consts) then consts
else (Consts.merge (local_consts, thy_consts), thy_consts) (*historic merge order*)
end);
fun transfer thy = Context.raw_transfer thy #> transfer_syntax thy;
fun transfer_facts thy =
map_facts (fn local_facts => Facts.merge (Global_Theory.facts_of thy, local_facts));
fun background_theory f ctxt = transfer (f (theory_of ctxt)) ctxt;
fun background_theory_result f ctxt =
let val (res, thy') = f (theory_of ctxt)
in (res, ctxt |> transfer thy') end;
(* hybrid facts *)
val facts_of = #facts o rep_data;
fun facts_of_fact ctxt name =
let
val local_facts = facts_of ctxt;
val global_facts = Global_Theory.facts_of (theory_of ctxt);
in
if Facts.defined local_facts name
then local_facts else global_facts
end;
fun markup_extern_fact ctxt name =
let
val facts = facts_of_fact ctxt name;
val (markup, xname) = Facts.markup_extern ctxt facts name;
val markups =
if Facts.is_dynamic facts name then [markup, Markup.dynamic_fact name]
else [markup];
in (markups, xname) end;
(* augment context by implicit term declarations *)
fun augment t ctxt = ctxt
|> Variable.add_fixes_implicit t
|> Variable.declare_term t
|> Soft_Type_System.augment t;
(** pretty printing **)
val print_name = Token.print_name o Thy_Header.get_keywords';
val pretty_name = Pretty.str oo print_name;
fun pretty_term_abbrev ctxt = Syntax.pretty_term (set_mode mode_abbrev ctxt);
fun pretty_fact_name ctxt a =
Pretty.block [Pretty.marks_str (markup_extern_fact ctxt a), Pretty.str ":"];
fun pretty_fact ctxt =
let
val pretty_thm = Thm.pretty_thm ctxt;
val pretty_thms = map (Thm.pretty_thm_item ctxt);
in
fn ("", [th]) => pretty_thm th
| ("", ths) => Pretty.blk (0, Pretty.fbreaks (pretty_thms ths))
| (a, [th]) => Pretty.block [pretty_fact_name ctxt a, Pretty.brk 1, pretty_thm th]
| (a, ths) => Pretty.block (Pretty.fbreaks (pretty_fact_name ctxt a :: pretty_thms ths))
end;
(** prepare types **)
(* classes *)
fun check_class ctxt (xname, pos) =
let
val tsig = tsig_of ctxt;
val class_space = Type.class_space tsig;
val name = Type.cert_class tsig (Name_Space.intern class_space xname)
handle TYPE (msg, _, _) =>
error (msg ^ Position.here pos ^
Completion.markup_report
[Name_Space.completion (Context.Proof ctxt) class_space (K true) (xname, pos)]);
val reports =
if Context_Position.is_reported ctxt pos
then [(pos, Name_Space.markup class_space name)] else [];
in (name, reports) end;
fun read_class ctxt text =
let
val source = Syntax.read_input text;
val (c, reports) = check_class ctxt (Input.source_content source);
val _ = Context_Position.reports ctxt reports;
in c end;
(* types *)
fun read_typ_mode mode ctxt s =
Syntax.read_typ (Type.set_mode mode ctxt) s;
val read_typ = read_typ_mode Type.mode_default;
val read_typ_syntax = read_typ_mode Type.mode_syntax;
val read_typ_abbrev = read_typ_mode Type.mode_abbrev;
fun cert_typ_mode mode ctxt T =
Type.certify_typ mode (tsig_of ctxt) T
handle TYPE (msg, _, _) => error msg;
val cert_typ = cert_typ_mode Type.mode_default;
val cert_typ_syntax = cert_typ_mode Type.mode_syntax;
val cert_typ_abbrev = cert_typ_mode Type.mode_abbrev;
(** prepare terms and propositions **)
(* inferred types of parameters *)
fun infer_type ctxt x =
Term.fastype_of (singleton (Syntax.check_terms (set_mode mode_schematic ctxt)) (Free x));
fun inferred_param x ctxt =
let val p = (x, infer_type ctxt (x, dummyT))
in (p, ctxt |> Variable.declare_term (Free p)) end;
fun inferred_fixes ctxt =
fold_map inferred_param (map #2 (Variable.dest_fixes ctxt)) ctxt;
(* type names *)
fun check_type_name {proper, strict} ctxt (c, pos) =
if Lexicon.is_tid c then
if proper then error ("Not a type constructor: " ^ quote c ^ Position.here pos)
else
let
val reports =
if Context_Position.is_reported ctxt pos
then [(pos, Markup.tfree)] else [];
in (TFree (c, default_sort ctxt (c, ~1)), reports) end
else
let
val ((d, reports), decl) = Type.check_decl (Context.Proof ctxt) (tsig_of ctxt) (c, pos);
fun err () = error ("Bad type name: " ^ quote d ^ Position.here pos);
val args =
(case decl of
Type.LogicalType n => n
| Type.Abbreviation (vs, _, _) => if strict then err () else length vs
| Type.Nonterminal => if strict then err () else 0);
in (Type (d, replicate args dummyT), reports) end;
fun read_type_name flags ctxt text =
let
val source = Syntax.read_input text;
val (T, reports) = check_type_name flags ctxt (Input.source_content source);
val _ = Context_Position.reports ctxt reports;
in T end;
(* constant names *)
fun consts_completion_message ctxt (c, ps) =
ps |> map (fn pos =>
Name_Space.completion (Context.Proof ctxt) (Consts.space_of (consts_of ctxt)) (K true) (c, pos))
|> Completion.markup_report;
fun check_const {proper, strict} ctxt (c, ps) =
let
val _ =
Name.reject_internal (c, ps) handle ERROR msg =>
error (msg ^ consts_completion_message ctxt (c, ps));
fun err msg = error (msg ^ Position.here_list ps);
val consts = consts_of ctxt;
val fixed = if proper then NONE else Variable.lookup_fixed ctxt c;
val (t, reports) =
(case (fixed, Variable.lookup_const ctxt c) of
(SOME x, NONE) =>
let
val reports = ps
|> filter (Context_Position.is_reported ctxt)
|> map (fn pos =>
(pos, Markup.name x (if Name.is_skolem x then Markup.skolem else Markup.free)));
in (Free (x, infer_type ctxt (x, dummyT)), reports) end
| (_, SOME d) =>
let
val T = Consts.type_scheme consts d handle TYPE (msg, _, _) => err msg;
val reports = ps
|> filter (Context_Position.is_reported ctxt)
|> map (fn pos => (pos, Name_Space.markup (Consts.space_of consts) d));
in (Const (d, T), reports) end
| _ => Consts.check_const (Context.Proof ctxt) consts (c, ps));
val _ =
(case (strict, t) of
(true, Const (d, _)) =>
(ignore (Consts.the_const consts d) handle TYPE (msg, _, _) => err msg)
| _ => ());
in (t, reports) end;
fun read_const flags ctxt text =
let
val source = Syntax.read_input text;
val (c, pos) = Input.source_content source;
val (t, reports) = check_const flags ctxt (c, [pos]);
val _ = Context_Position.reports ctxt reports;
in t end;
(* type arities *)
local
fun prep_arity prep_tycon prep_sort ctxt (t, Ss, S) =
let val arity = (prep_tycon ctxt t, map (prep_sort ctxt) Ss, prep_sort ctxt S)
in Type.add_arity (Context.Proof ctxt) arity (tsig_of ctxt); arity end;
in
val read_arity =
prep_arity ((#1 o dest_Type) oo read_type_name {proper = true, strict = true}) Syntax.read_sort;
val cert_arity = prep_arity (K I) (Type.cert_sort o tsig_of);
end;
(* read_term *)
fun read_term_mode mode ctxt = Syntax.read_term (set_mode mode ctxt);
val read_term_pattern = read_term_mode mode_pattern;
val read_term_schematic = read_term_mode mode_schematic;
val read_term_abbrev = read_term_mode mode_abbrev;
(* local abbreviations *)
local
fun certify_consts ctxt =
Consts.certify {do_expand = not (abbrev_mode ctxt)}
(Context.Proof ctxt) (tsig_of ctxt) (consts_of ctxt);
fun expand_binds ctxt =
let
val Mode {pattern, schematic, ...} = get_mode ctxt;
fun reject_schematic (t as Var _) =
error ("Unbound schematic variable: " ^ Syntax.string_of_term ctxt t)
| reject_schematic (Abs (_, _, t)) = reject_schematic t
| reject_schematic (t $ u) = (reject_schematic t; reject_schematic u)
| reject_schematic _ = ();
in
if pattern then I
else Variable.expand_binds ctxt #> (if schematic then I else tap reject_schematic)
end;
in
fun expand_abbrevs ctxt = certify_consts ctxt #> expand_binds ctxt;
end;
val show_abbrevs = Config.declare_bool ("show_abbrevs", \<^here>) (K true);
fun contract_abbrevs ctxt t =
let
val thy = theory_of ctxt;
val consts = consts_of ctxt;
val Mode {abbrev, ...} = get_mode ctxt;
val retrieve = Consts.retrieve_abbrevs consts (print_mode_value () @ [""]);
fun match_abbrev u = Option.map #1 (get_first (Pattern.match_rew thy u) (retrieve u));
in
if abbrev orelse not (Config.get ctxt show_abbrevs) orelse not (can Term.type_of t) then t
else Pattern.rewrite_term_top thy [] [match_abbrev] t
end;
(* patterns *)
fun prepare_patternT ctxt T =
let
val Mode {pattern, schematic, ...} = get_mode ctxt;
val _ =
pattern orelse schematic orelse
T |> Term.exists_subtype
(fn T as TVar (xi, _) =>
not (Type_Infer.is_param xi) andalso
error ("Illegal schematic type variable: " ^ Syntax.string_of_typ ctxt T)
| _ => false)
in T end;
local
val dummies = Config.declare_bool ("Proof_Context.dummies", \<^here>) (K false);
fun check_dummies ctxt t =
if Config.get ctxt dummies then t
else Term.no_dummy_patterns t handle TERM _ => error "Illegal dummy pattern(s) in term";
fun prepare_dummies ts = #1 (fold_map Term.replace_dummy_patterns ts 1);
in
val allow_dummies = Config.put dummies true;
fun prepare_patterns ctxt =
let val Mode {pattern, ...} = get_mode ctxt in
Type_Infer.fixate ctxt pattern #>
pattern ? Variable.polymorphic ctxt #>
(Same.commit o Same.map o Term.map_types_same)
(Same.function_eq (op =) (prepare_patternT ctxt)) #>
(if pattern then prepare_dummies else map (check_dummies ctxt))
end;
end;
(* sort constraints *)
local
fun prepare_sorts_env ctxt tys =
let
val tsig = tsig_of ctxt;
val defaultS = Type.defaultS tsig;
val dummy_var = ("'_dummy_", ~1);
fun constraint (xi, raw_S) env =
let val (ps, S) = Term_Position.decode_positionS raw_S in
if xi = dummy_var orelse S = dummyS then env
else
Vartab.insert (op =) (xi, Type.minimize_sort tsig S) env
handle Vartab.DUP _ =>
error ("Inconsistent sort constraints for type variable " ^
quote (Term.string_of_vname' xi) ^ Position.here_list ps)
end;
val env =
Vartab.build (tys |> (fold o fold_atyps)
(fn TFree (x, S) => constraint ((x, ~1), S)
| TVar v => constraint v
| _ => I));
fun get_sort xi raw_S =
if xi = dummy_var then
Type.minimize_sort tsig (#2 (Term_Position.decode_positionS raw_S))
else
(case (Vartab.lookup env xi, Variable.def_sort ctxt xi) of
(NONE, NONE) => defaultS
| (NONE, SOME S) => S
| (SOME S, NONE) => S
| (SOME S, SOME S') =>
if Type.eq_sort tsig (S, S') then S'
else
error ("Sort constraint " ^ Syntax.string_of_sort ctxt S ^
" inconsistent with default " ^ Syntax.string_of_sort ctxt S' ^
" for type variable " ^ quote (Term.string_of_vname' xi)));
fun add_report S pos reports =
if Position.is_reported pos andalso not (AList.defined (op =) reports pos) then
(pos, Position.reported_text pos Markup.sorting (Syntax.string_of_sort ctxt S)) :: reports
else reports;
fun get_sort_reports xi raw_S =
let
val ps = #1 (Term_Position.decode_positionS raw_S);
val S = get_sort xi raw_S handle ERROR msg => error (msg ^ Position.here_list ps);
in fold (add_report S) ps end;
val reports =
(fold o fold_atyps)
(fn T =>
if Term_Position.is_positionT T then I
else
(case T of
TFree (x, raw_S) => get_sort_reports (x, ~1) raw_S
| TVar (xi, raw_S) => get_sort_reports xi raw_S
| _ => I)) tys [];
in (map #2 reports, get_sort) end;
fun replace_sortsT_same get_sort =
Term.map_atyps_same
(fn T =>
if Term_Position.is_positionT T then raise Same.SAME
else
(case T of
TFree (x, raw_S) => TFree (x, Same.function_eq (op =) (get_sort (x, ~1)) raw_S)
| TVar (xi, raw_S) => TVar (xi, Same.function_eq (op =) (get_sort xi) raw_S)
| _ => raise Same.SAME));
in
fun prepare_sortsT ctxt tys =
let val (sorting_report, get_sort) = prepare_sorts_env ctxt tys
in (sorting_report, (Same.commit o Same.map) (replace_sortsT_same get_sort) tys) end;
fun prepare_sorts ctxt tms =
let
val tys = rev ((fold o fold_types) cons tms []);
val (sorting_report, get_sort) = prepare_sorts_env ctxt tys;
val tms' = (Same.commit o Same.map o Term.map_types_same) (replace_sortsT_same get_sort) tms;
in (sorting_report, tms') end;
fun check_tfree ctxt v =
let
val (sorting_report, [TFree a]) = prepare_sortsT ctxt [TFree v];
val _ = if Context_Position.reports_enabled ctxt then Output.report sorting_report else ();
in a end;
end;
(* certify terms *)
local
fun cert_flags flags ctxt t =
let val t' = expand_abbrevs ctxt t in
#1 (Sign.certify_flags flags (Context.Proof ctxt) (consts_of ctxt) (theory_of ctxt) t')
handle TYPE (msg, _, _) => error msg | TERM (msg, _) => error msg
end;
in
val cert_term = cert_flags {prop = false, do_expand = false};
val cert_prop = cert_flags {prop = true, do_expand = false};
end;
(* check/uncheck *)
fun def_type ctxt =
let val Mode {pattern, ...} = get_mode ctxt
in Variable.def_type ctxt pattern end;
fun standard_typ_check ctxt =
map (cert_typ_mode (Type.get_mode ctxt) ctxt #> prepare_patternT ctxt);
val standard_term_check_finish = prepare_patterns;
fun standard_term_uncheck ctxt = map (contract_abbrevs ctxt);
(** export results **)
fun export_ goal inner outer =
map (Assumption.export_ goal inner outer) #>
Variable.export inner outer;
val export = export_{goal = false};
val export_goal = export_{goal = true};
fun export_morphism inner outer =
Assumption.export_morphism inner outer $>
Variable.export_morphism inner outer;
(** term bindings **)
(* auto bindings *)
fun auto_bind f props ctxt = fold Variable.maybe_bind_term (f ctxt props) ctxt;
val auto_bind_goal = auto_bind Auto_Bind.goal;
val auto_bind_facts = auto_bind Auto_Bind.facts;
(* match bindings *)
fun simult_matches ctxt (t, pats) =
(case Seq.pull (Unify.matchers (Context.Proof ctxt) (map (rpair t) pats)) of
NONE => error "Pattern match failed!"
| SOME (env, _) => Vartab.fold (fn (v, (_, t)) => cons (v, t)) (Envir.term_env env) []);
fun maybe_bind_term (xi, t) ctxt =
ctxt
|> Variable.maybe_bind_term (xi, Option.map (cert_term (set_mode mode_default ctxt)) t);
val bind_term = maybe_bind_term o apsnd SOME;
(* propositions with patterns *)
local
fun prep_propp prep_props ctxt raw_args =
let
val props = prep_props ctxt (maps (map fst) raw_args);
val props_ctxt = fold Variable.declare_term props ctxt;
val patss = maps (map (prep_props (set_mode mode_pattern props_ctxt) o snd)) raw_args;
val propps = unflat raw_args (props ~~ patss);
val binds = (maps o maps) (simult_matches props_ctxt) propps;
in (map (map fst) propps, binds) end;
in
val cert_propp = prep_propp (map o cert_prop);
val read_propp = prep_propp Syntax.read_props;
end;
(** theorems **)
(* fact_tac *)
local
fun comp_hhf_tac ctxt th i st =
PRIMSEQ (Thm.bicompose (SOME ctxt) {flatten = true, match = false, incremented = true}
(false, Drule.lift_all ctxt (Thm.cprem_of st i) th, 0) i) st;
fun comp_incr_tac _ [] _ = no_tac
| comp_incr_tac ctxt (th :: ths) i =
(fn st => comp_hhf_tac ctxt (Drule.incr_indexes st th) i st) APPEND
comp_incr_tac ctxt ths i;
val vacuous_facts = [Drule.termI];
in
fun potential_facts ctxt prop =
let
val body = Term.strip_all_body prop;
val vacuous =
filter (fn th => Term.could_unify (body, Thm.concl_of th)) vacuous_facts
|> map (rpair Position.none);
in Facts.could_unify (facts_of ctxt) body @ vacuous end;
fun fact_tac ctxt facts = Goal.norm_hhf_tac ctxt THEN' comp_incr_tac ctxt facts;
fun some_fact_tac ctxt =
SUBGOAL (fn (goal, i) => fact_tac ctxt (map #1 (potential_facts ctxt goal)) i);
end;
(* lookup facts *)
fun lookup_fact ctxt name =
let
val context = Context.Proof ctxt;
val thy = Proof_Context.theory_of ctxt;
in
(case Facts.lookup context (facts_of ctxt) name of
NONE => Facts.lookup context (Global_Theory.facts_of thy) name
| some => some)
end;
(* retrieve facts *)
val dynamic_facts_dummy = Config.declare_bool ("dynamic_facts_dummy_", \<^here>) (K false);
local
fun retrieve_global context =
Facts.retrieve context (Global_Theory.facts_of (Context.theory_of context));
fun retrieve_generic (context as Context.Proof ctxt) arg =
(Facts.retrieve context (facts_of ctxt) arg handle ERROR local_msg =>
(retrieve_global context arg handle ERROR _ => error local_msg))
| retrieve_generic context arg = retrieve_global context arg;
fun retrieve pick context (Facts.Fact s) =
let
val ctxt = Context.the_proof context;
val pos = Syntax.read_input_pos s;
val prop =
Syntax.read_prop (ctxt |> set_mode mode_default |> allow_dummies) s
|> singleton (Variable.polymorphic ctxt);
fun err ps msg =
error (msg ^ Position.here_list (pos :: ps) ^ ":\n" ^ Syntax.string_of_term ctxt prop);
val (prop', _) = Term.replace_dummy_patterns prop (Variable.maxidx_of ctxt + 1);
fun prove th = Goal.prove ctxt [] [] prop' (K (ALLGOALS (fact_tac ctxt [th])));
val results = map_filter (try (apfst prove)) (potential_facts ctxt prop');
val (thm, thm_pos) =
(case distinct (eq_fst Thm.eq_thm_prop) results of
[res] => res
| [] => err [] "Failed to retrieve literal fact"
| dups => err (distinct (op =) (map #2 dups)) "Ambiguous specification of literal fact");
val markup = Position.entity_markup Markup.literal_factN ("", thm_pos);
val _ = Context_Position.report_generic context pos markup;
in pick true ("", thm_pos) [thm] end
| retrieve pick context (Facts.Named ((xname, pos), sel)) =
let
val thy = Context.theory_of context;
fun immediate thms = {name = xname, dynamic = false, thms = map (Thm.transfer thy) thms};
val {name, dynamic, thms} =
(case xname of
"" => immediate [Drule.dummy_thm]
| "_" => immediate [Drule.asm_rl]
| "nothing" => immediate []
| _ => retrieve_generic context (xname, pos));
val thms' =
if dynamic andalso Config.get_generic context dynamic_facts_dummy
then [Drule.free_dummy_thm]
else Facts.select (Facts.Named ((name, pos), sel)) thms;
in pick (dynamic andalso is_none sel) (name, pos) thms' end;
in
val get_fact_generic =
retrieve (fn dynamic => fn (name, _) => fn thms =>
(if dynamic then SOME name else NONE, thms));
val get_fact = retrieve (K (K I)) o Context.Proof;
val get_fact_single = retrieve (K Facts.the_single) o Context.Proof;
fun get_thms ctxt = get_fact ctxt o Facts.named;
fun get_thm ctxt = get_fact_single ctxt o Facts.named;
end;
(* inner statement mode *)
val inner_stmt = Config.declare_bool ("inner_stmt", \<^here>) (K false);
fun is_stmt ctxt = Config.get ctxt inner_stmt;
val set_stmt = Config.put inner_stmt;
val restore_stmt = set_stmt o is_stmt;
(* facts *)
fun add_thms_dynamic arg ctxt =
ctxt |> map_facts_result (Facts.add_dynamic (Context.Proof ctxt) arg);
local
fun add_facts {index} arg ctxt = ctxt
|> map_facts_result (Facts.add_static (Context.Proof ctxt) {strict = false, index = index} arg);
fun update_facts flags (b, SOME ths) ctxt = ctxt |> add_facts flags (b, Lazy.value ths) |> #2
| update_facts _ (b, NONE) ctxt = ctxt |> map_facts (Facts.del (full_name ctxt b));
fun full_name_pos ctxt b = (full_name ctxt b, Binding.default_pos_of b);
in
fun add_thms_lazy kind (b, ths) ctxt =
let
val name_pos = full_name_pos ctxt b;
val ths' =
Global_Theory.check_thms_lazy ths
|> Lazy.map_finished
(Global_Theory.name_thms Global_Theory.unofficial1 name_pos #> map (Thm.kind_rule kind));
val (_, ctxt') = add_facts {index = is_stmt ctxt} (b, ths') ctxt;
in ctxt' end;
fun note_thms kind ((b, more_atts), facts) ctxt =
let
val name_pos = full_name_pos ctxt b;
fun app_fact (thms, atts) =
fold_map (Thm.proof_attributes (surround (Thm.kind kind) (atts @ more_atts))) thms;
val (thms', ctxt') =
fold_maps app_fact (Global_Theory.name_facts Global_Theory.unofficial1 name_pos facts) ctxt;
val thms'' = Global_Theory.name_thms Global_Theory.unofficial2 name_pos thms';
val (_, ctxt'') = ctxt' |> add_facts {index = is_stmt ctxt} (b, Lazy.value thms'');
in ((#1 name_pos, thms''), ctxt'') end;
val note_thmss = fold_map o note_thms;
fun put_thms index thms ctxt = ctxt
|> map_naming (K Name_Space.local_naming)
|> Context_Position.set_visible false
|> update_facts {index = index} (apfst Binding.name thms)
|> Context_Position.restore_visible ctxt
|> restore_naming ctxt;
end;
fun alias_fact b c ctxt = map_facts (Facts.alias (naming_of ctxt) b c) ctxt;
(** basic logical entities **)
(* variables *)
fun declare_var (x, opt_T, mx) ctxt =
let val T = (case opt_T of SOME T => T | NONE => Mixfix.default_constraint mx)
in (T, ctxt |> Variable.declare_constraints (Free (x, T))) end;
fun add_syntax vars ctxt =
map_syntax_idents (Local_Syntax.add_syntax ctxt (map (pair Local_Syntax.Fixed) vars)) ctxt;
fun check_var internal b =
let
val x = Variable.check_name b;
val check = if internal then Name.reject_skolem else Name.reject_internal;
val _ =
if can check (x, []) andalso Symbol_Pos.is_identifier x then ()
else error ("Bad name: " ^ Binding.print b);
in x end;
local
fun check_mixfix ctxt (b, T, mx) =
let
val ([x], ctxt') = Variable.add_fixes_binding [Binding.reset_pos b] ctxt;
val mx' = Mixfix.reset_pos mx;
val _ = add_syntax [(x, T, if Context_Position.reports_enabled ctxt then mx else mx')] ctxt';
in mx' end;
fun prep_var prep_typ internal (b, raw_T, mx) ctxt =
let
val x = check_var internal b;
fun cond_tvars T =
if internal then T
else Type.no_tvars T handle TYPE (msg, _, _) => error msg;
val opt_T = Option.map (cond_tvars o prep_typ ctxt) raw_T;
val (T, ctxt') = ctxt |> declare_var (x, opt_T, mx);
val mx' = if Mixfix.is_empty mx then mx else check_mixfix ctxt' (b, T, mx);
in ((b, SOME T, mx'), ctxt') end;
in
val read_var = prep_var Syntax.read_typ false;
val cert_var = prep_var cert_typ true;
end;
(* syntax *)
fun check_syntax_const ctxt (c, pos) =
if is_some (Syntax.lookup_const (syn_of ctxt) c) then c
else error ("Unknown syntax const: " ^ quote c ^ Position.here pos);
fun syntax add mode args ctxt =
let val args' = map (pair Local_Syntax.Const) args
in ctxt |> map_syntax (#2 o Local_Syntax.update_modesyntax ctxt add mode args') end;
fun generic_syntax add mode args =
Context.mapping (Sign.syntax add mode args) (syntax add mode args);
(* notation *)
local
fun type_syntax (Type (c, args), mx) =
SOME (Local_Syntax.Type, (Lexicon.mark_type c, Mixfix.make_type (length args), mx))
| type_syntax _ = NONE;
fun const_syntax _ (Free (x, T), mx) = SOME (Local_Syntax.Fixed, (x, T, mx))
| const_syntax ctxt (Const (c, _), mx) =
(case try (Consts.type_scheme (consts_of ctxt)) c of
SOME T => SOME (Local_Syntax.Const, (Lexicon.mark_const c, T, mx))
| NONE => NONE)
| const_syntax _ _ = NONE;
fun gen_notation make_syntax add mode args ctxt =
ctxt |> map_syntax_idents
(Local_Syntax.update_modesyntax ctxt add mode (map_filter (make_syntax ctxt) args));
in
val type_notation = gen_notation (K type_syntax);
val notation = gen_notation const_syntax;
fun generic_type_notation add mode args phi =
let
val args' = args |> map_filter (fn (T, mx) =>
let
val T' = Morphism.typ phi T;
val similar = (case (T, T') of (Type (c, _), Type (c', _)) => c = c' | _ => false);
in if similar then SOME (T', mx) else NONE end);
in Context.mapping (Sign.type_notation add mode args') (type_notation add mode args') end;
fun generic_notation add mode args phi =
let
val args' = args |> map_filter (fn (t, mx) =>
let val t' = Morphism.term phi t
in if Term.aconv_untyped (t, t') then SOME (t', mx) else NONE end);
in Context.mapping (Sign.notation add mode args') (notation add mode args') end;
end;
(* aliases *)
fun type_alias b c ctxt = (map_tsig o apfst) (Type.type_alias (naming_of ctxt) b c) ctxt;
fun const_alias b c ctxt = (map_consts o apfst) (Consts.alias (naming_of ctxt) b c) ctxt;
(* local constants *)
fun add_const_constraint (c, opt_T) ctxt =
let
fun prepT raw_T =
let val T = cert_typ ctxt raw_T
in cert_term ctxt (Const (c, T)); T end;
in ctxt |> (map_consts o apfst) (Consts.constrain (c, Option.map prepT opt_T)) end;
fun add_abbrev mode (b, raw_t) ctxt =
let
val t0 = cert_term (ctxt |> set_mode mode_abbrev) raw_t
handle ERROR msg => cat_error msg ("in constant abbreviation " ^ Binding.print b);
val [t] = Variable.exportT_terms (Variable.declare_term t0 ctxt) ctxt [t0];
val ((lhs, rhs), consts') = consts_of ctxt
|> Consts.abbreviate (Context.Proof ctxt) (tsig_of ctxt) mode (b, t);
in
ctxt
|> (map_consts o apfst) (K consts')
|> Variable.declare_term rhs
|> pair (lhs, rhs)
end;
fun revert_abbrev mode c = (map_consts o apfst) (Consts.revert_abbrev mode c);
fun generic_add_abbrev mode arg =
Context.mapping_result (Sign.add_abbrev mode arg) (add_abbrev mode arg);
fun generic_revert_abbrev mode arg =
Context.mapping (Sign.revert_abbrev mode arg) (revert_abbrev mode arg);
(* fixes *)
local
fun gen_fixes prep_var raw_vars ctxt =
let
val (vars, _) = fold_map prep_var raw_vars ctxt;
val (xs, ctxt') = Variable.add_fixes_binding (map #1 vars) ctxt;
val _ =
Context_Position.reports ctxt'
(flat (map2 (fn x => fn pos =>
[(pos, Variable.markup ctxt' x), (pos, Variable.markup_entity_def ctxt' x)])
xs (map (Binding.pos_of o #1) vars)));
val vars' = map2 (fn x => fn (_, opt_T, mx) => (x, opt_T, mx)) xs vars;
val (Ts, ctxt'') = fold_map declare_var vars' ctxt';
val vars'' = map2 (fn T => fn (x, _, mx) => (x, T, mx)) Ts vars';
in (xs, add_syntax vars'' ctxt'') end;
in
val add_fixes = gen_fixes cert_var;
val add_fixes_cmd = gen_fixes read_var;
end;
(** assumptions **)
local
fun gen_assms prep_propp exp args ctxt =
let
val (propss, binds) = prep_propp ctxt (map snd args);
val props = flat propss;
in
ctxt
|> fold Variable.declare_term props
|> tap (Variable.warn_extra_tfrees ctxt)
|> fold_burrow (Assumption.add_assms exp o map (Thm.cterm_of ctxt)) propss
|-> (fn premss =>
auto_bind_facts props
#> fold Variable.bind_term binds
#> note_thmss "" (map fst args ~~ map (map (fn th => ([th], []))) premss))
end;
in
val add_assms = gen_assms cert_propp;
val add_assms_cmd = gen_assms read_propp;
end;
(** cases **)
fun dest_cases prev_ctxt ctxt =
let
val serial_of = #serial oo (Name_Space.the_entry o Name_Space.space_of_table);
val ignored =
(case prev_ctxt of
NONE => Intset.empty
| SOME ctxt0 =>
let val cases0 = cases_of ctxt0 in
Intset.build (cases0 |> Name_Space.fold_table (fn (a, _) =>
Intset.insert (serial_of cases0 a)))
end);
val cases = cases_of ctxt;
in
Name_Space.fold_table (fn (a, c) =>
let val i = serial_of cases a
in not (Intset.member ignored i) ? cons (i, (a, c)) end) cases []
|> sort (int_ord o apply2 #1) |> map #2
end;
local
fun drop_schematic (b as (xi, SOME t)) = if Term.exists_subterm is_Var t then (xi, NONE) else b
| drop_schematic b = b;
fun update_case _ ("", _) cases = cases
| update_case _ (name, NONE) cases = Name_Space.del_table name cases
| update_case context (name, SOME c) cases =
#2 (Name_Space.define context false (Binding.name name, c) cases);
fun fix (b, T) ctxt =
let val ([x], ctxt') = add_fixes [(b, SOME T, NoSyn)] ctxt
in (Free (x, T), ctxt') end;
in
fun update_cases args ctxt =
let val context = Context.Proof ctxt |> Name_Space.map_naming (K Name_Space.global_naming);
in map_cases (fold (update_case context) args) ctxt end;
fun case_result c ctxt =
let
val Rule_Cases.Case {fixes, ...} = c;
val (ts, ctxt') = ctxt |> fold_map fix fixes;
val Rule_Cases.Case {assumes, binds, cases, ...} = Rule_Cases.apply ts c;
in
ctxt'
|> fold (maybe_bind_term o drop_schematic) binds
|> update_cases (map (apsnd SOME) cases)
|> pair (assumes, (binds, cases))
end;
val apply_case = apfst fst oo case_result;
fun check_case ctxt internal (name, pos) param_specs =
let
val (_, Rule_Cases.Case {fixes, assumes, binds, cases}) =
Name_Space.check (Context.Proof ctxt) (cases_of ctxt) (name, pos);
val _ = List.app (fn NONE => () | SOME b => ignore (check_var internal b)) param_specs;
fun replace (opt_x :: xs) ((y, T) :: ys) = (the_default y opt_x, T) :: replace xs ys
| replace [] ys = ys
| replace (_ :: _) [] =
error ("Too many parameters for case " ^ quote name ^ Position.here pos);
val fixes' = replace param_specs fixes;
val binds' = map drop_schematic binds;
in
if null (fold (Term.add_tvarsT o snd) fixes []) andalso
null (fold (fold Term.add_vars o snd) assumes []) then
Rule_Cases.Case {fixes = fixes', assumes = assumes, binds = binds', cases = cases}
else error ("Illegal schematic variable(s) in case " ^ quote name ^ Position.here pos)
end;
end;
(* structured statements *)
type stmt =
{vars: ((binding * typ option * mixfix) * (string * term)) list,
propss: term list list,
binds: (indexname * term) list,
result_binds: (indexname * term) list};
type statement =
{fixes: (string * term) list,
assumes: term list list,
shows: term list list,
result_binds: (indexname * term option) list,
text: term,
result_text: term};
local
fun export_binds ctxt' ctxt params binds =
let
val rhss =
map (the_list o Option.map (Logic.close_term params) o snd) binds
|> burrow (Variable.export_terms ctxt' ctxt)
|> map (try the_single);
in map fst binds ~~ rhss end;
fun prep_stmt prep_var prep_propp raw_vars raw_propps ctxt =
let
val (vars, vars_ctxt) = fold_map prep_var raw_vars ctxt;
val xs = map (Variable.check_name o #1) vars;
val (xs', fixes_ctxt) = add_fixes vars vars_ctxt;
val (propss, binds) = prep_propp fixes_ctxt raw_propps;
val (ps, params_ctxt) = fixes_ctxt
|> (fold o fold) Variable.declare_term propss
|> fold_map inferred_param xs';
val params = xs ~~ map Free ps;
val vars' = map2 (fn (b, _, mx) => fn (_, T) => (b, SOME T, mx)) vars ps;
val binds' = binds
|> map (apsnd SOME)
|> export_binds params_ctxt ctxt params
|> map (apsnd the);
val _ = Variable.warn_extra_tfrees fixes_ctxt params_ctxt;
val result : stmt =
{vars = vars' ~~ params, propss = propss, binds = binds, result_binds = binds'};
in (result, params_ctxt) end;
fun prep_statement prep_var prep_propp raw_fixes raw_assumes raw_shows ctxt =
let
val ((fixes, (assumes, shows), binds), ctxt') = ctxt
|> prep_stmt prep_var prep_propp raw_fixes (raw_assumes @ raw_shows)
|-> (fn {vars, propss, binds, ...} =>
fold Variable.bind_term binds #>
pair (map #2 vars, chop (length raw_assumes) propss, binds));
val binds' =
(Auto_Bind.facts ctxt' (flat shows) @
(case try List.last (flat shows) of
NONE => []
| SOME prop => map (apsnd (SOME o Auto_Bind.abs_params prop)) binds))
|> export_binds ctxt' ctxt fixes;
val text = Logic.close_prop fixes (flat assumes) (Logic.mk_conjunction_list (flat shows));
val text' = singleton (Variable.export_terms ctxt' ctxt) text;
val result : statement =
{fixes = fixes,
assumes = assumes,
shows = shows,
result_binds = binds',
text = text,
result_text = text'};
in (result, ctxt') end;
in
val cert_stmt = prep_stmt cert_var cert_propp;
val read_stmt = prep_stmt read_var read_propp;
val cert_statement = prep_statement cert_var cert_propp;
val read_statement = prep_statement read_var read_propp;
end;
(** print context information **)
(* local syntax *)
val print_syntax = Syntax.print_syntax o syn_of;
(* abbreviations *)
fun pretty_abbrevs verbose show_globals ctxt =
let
val space = const_space ctxt;
val (constants, global_constants) =
apply2 (#constants o Consts.dest) (#consts (rep_data ctxt));
val globals = Symtab.make global_constants;
fun add_abbr (_, (_, NONE)) = I
| add_abbr (c, (T, SOME t)) =
if not show_globals andalso Symtab.defined globals c then I
else cons (c, Logic.mk_equals (Const (c, T), t));
val abbrevs = Name_Space.markup_entries verbose ctxt space (fold add_abbr constants []);
in
if null abbrevs then []
else [Pretty.big_list "abbreviations:" (map (pretty_term_abbrev ctxt o #2) abbrevs)]
end;
fun print_abbrevs verbose = Pretty.writeln_chunks o pretty_abbrevs verbose true;
(* term bindings *)
fun pretty_term_bindings ctxt =
let
val binds = Variable.binds_of ctxt;
fun prt_bind (xi, (T, t)) = pretty_term_abbrev ctxt (Logic.mk_equals (Var (xi, T), t));
in
if Vartab.is_empty binds then []
else [Pretty.big_list "term bindings:" (map prt_bind (Vartab.dest binds))]
end;
(* local facts *)
fun pretty_local_facts verbose ctxt =
let
val facts = facts_of ctxt;
val props = map #1 (Facts.props facts);
val local_facts =
(if null props then [] else [("<unnamed>", props)]) @
Facts.dest_static verbose [Global_Theory.facts_of (theory_of ctxt)] facts;
in
if null local_facts then []
else
[Pretty.big_list "local facts:"
(map #1 (sort_by (#1 o #2) (map (`(pretty_fact ctxt)) local_facts)))]
end;
fun print_local_facts verbose ctxt =
Pretty.writeln_chunks (pretty_local_facts verbose ctxt);
(* named local contexts *)
local
fun pretty_case (name, (fixes, ((asms, (lets, cs)), ctxt))) =
let
val prt_name = pretty_name ctxt;
val prt_term = Syntax.pretty_term ctxt;
fun prt_let (xi, t) = Pretty.block
[Pretty.quote (prt_term (Var (xi, Term.fastype_of t))), Pretty.str " =", Pretty.brk 1,
Pretty.quote (prt_term t)];
fun prt_asm (a, ts) =
Pretty.block (Pretty.breaks
((if a = "" then [] else [prt_name a, Pretty.str ":"]) @
map (Pretty.quote o prt_term) ts));
fun prt_sect _ _ _ [] = []
| prt_sect head sep prt xs =
[Pretty.block (Pretty.breaks (head ::
flat (separate sep (map (single o prt) xs))))];
in
Pretty.block
(prt_name name :: Pretty.str ":" :: Pretty.fbrk ::
Pretty.fbreaks
(prt_sect (Pretty.keyword1 "fix") [] (prt_name o Binding.name_of o fst) fixes @
prt_sect (Pretty.keyword1 "let") [Pretty.keyword2 "and"] prt_let
(map_filter (fn (xi, SOME t) => SOME (xi, t) | _ => NONE) lets) @
(if forall (null o #2) asms then []
else prt_sect (Pretty.keyword1 "assume") [Pretty.keyword2 "and"] prt_asm asms) @
prt_sect (Pretty.str "subcases:") [] (prt_name o fst) cs))
end;
in
fun pretty_cases ctxt =
let
val cases =
dest_cases NONE ctxt |> map (fn (name, c as Rule_Cases.Case {fixes, ...}) =>
(name, (fixes, case_result c ctxt)));
in
if null cases then []
else [Pretty.big_list "cases:" (map pretty_case cases)]
end;
end;
fun print_cases_proof ctxt0 ctxt =
let
fun trim_name x = if Name.is_internal x then Name.clean x else "_";
val trim_names = map trim_name #> drop_suffix (equal "_");
fun print_case name xs =
(case trim_names xs of
[] => print_name ctxt name
| xs' => enclose "(" ")" (space_implode " " (map (print_name ctxt) (name :: xs'))));
fun is_case x t =
x = Rule_Cases.case_conclN andalso not (Term.exists_subterm Term.is_Var t);
fun indentation depth = prefix (Symbol.spaces (2 * depth));
fun print_proof depth (name, Rule_Cases.Case {fixes, binds, cases, ...}) =
let
val indent = indentation depth;
val head = indent ("case " ^ print_case name (map (Binding.name_of o #1) fixes));
val tail =
if null cases then
let val concl =
if exists (fn ((x, _), SOME t) => is_case x t | _ => false) binds
then Rule_Cases.case_conclN else Auto_Bind.thesisN
in indent ("then show ?" ^ concl ^ " sorry") end
else print_proofs depth cases;
in head ^ "\n" ^ tail end
and print_proofs 0 [] = ""
| print_proofs depth cases =
let
val indent = indentation depth;
val body = map (print_proof (depth + 1)) cases |> separate (indent "next")
in
if depth = 0 then body @ [indent "qed"]
else if length cases = 1 then body
else indent "{" :: body @ [indent "}"]
end |> cat_lines;
in
(case print_proofs 0 (dest_cases (SOME ctxt0) ctxt) of
"" => ""
| s => "Proof outline with cases:\n" ^ Active.sendback_markup_command s)
end;
(* core context *)
val debug = Config.declare_bool ("Proof_Context.debug", \<^here>) (K false);
val verbose = Config.declare_bool ("Proof_Context.verbose", \<^here>) (K false);
fun pretty_ctxt ctxt =
if not (Config.get ctxt debug) then []
else
let
val prt_term = Syntax.pretty_term ctxt;
(*structures*)
val {structs, ...} = Syntax_Trans.get_idents ctxt;
val prt_structs =
if null structs then []
else [Pretty.block (Pretty.str "structures:" :: Pretty.brk 1 ::
Pretty.commas (map Pretty.str structs))];
(*fixes*)
fun prt_fix (x, x') =
if x = x' then Pretty.str x
else Pretty.block [Pretty.str x, Pretty.str " =", Pretty.brk 1, prt_term (Syntax.free x')];
val fixes =
filter_out ((Name.is_internal orf member (op =) structs) o #1)
(Variable.dest_fixes ctxt);
val prt_fixes =
if null fixes then []
else [Pretty.block (Pretty.str "fixed variables:" :: Pretty.brk 1 ::
Pretty.commas (map prt_fix fixes))];
(*assumptions*)
val prt_assms =
(case Assumption.all_prems_of ctxt of
[] => []
| prems => [Pretty.big_list "assumptions:" [pretty_fact ctxt ("", prems)]]);
in prt_structs @ prt_fixes @ prt_assms end;
(* main context *)
fun pretty_context ctxt =
let
val verbose = Config.get ctxt verbose;
fun verb f x = if verbose then f (x ()) else [];
val prt_term = Syntax.pretty_term ctxt;
val prt_typ = Syntax.pretty_typ ctxt;
val prt_sort = Syntax.pretty_sort ctxt;
(*theory*)
val pretty_thy = Pretty.block
[Pretty.str "theory:", Pretty.brk 1, Context.pretty_thy (theory_of ctxt)];
(*defaults*)
fun prt_atom prt prtT (x, X) = Pretty.block
[prt x, Pretty.str " ::", Pretty.brk 1, prtT X];
fun prt_var (x, ~1) = prt_term (Syntax.free x)
| prt_var xi = prt_term (Syntax.var xi);
fun prt_varT (x, ~1) = prt_typ (TFree (x, []))
| prt_varT xi = prt_typ (TVar (xi, []));
val prt_defT = prt_atom prt_var prt_typ;
val prt_defS = prt_atom prt_varT prt_sort;
val (types, sorts) = Variable.constraints_of ctxt;
in
verb single (K pretty_thy) @
pretty_ctxt ctxt @
verb (pretty_abbrevs true false) (K ctxt) @
verb pretty_term_bindings (K ctxt) @
verb (pretty_local_facts true) (K ctxt) @
verb pretty_cases (K ctxt) @
verb single (fn () => Pretty.big_list "type constraints:" (map prt_defT (Vartab.dest types))) @
verb single (fn () => Pretty.big_list "default sorts:" (map prt_defS (Vartab.dest sorts)))
end;
end;
val show_abbrevs = Proof_Context.show_abbrevs;