Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
theory Dagstuhl
imports "HOLCF-Library.Stream"
begin
axiomatization
  y  :: "'a"
definition
  YS :: "'a stream" where
  "YS = fix\<cdot>(LAM x. y && x)"
definition
  YYS :: "'a stream" where
  "YYS = fix\<cdot>(LAM z. y && y && z)"
lemma YS_def2: "YS = y && YS"
  apply (rule trans)
  apply (rule fix_eq2)
  apply (rule YS_def [THEN eq_reflection])
  apply (rule beta_cfun)
  apply simp
  done
lemma YYS_def2: "YYS = y && y && YYS"
  apply (rule trans)
  apply (rule fix_eq2)
  apply (rule YYS_def [THEN eq_reflection])
  apply (rule beta_cfun)
  apply simp
  done
lemma lemma3: "YYS << y && YYS"
  apply (rule YYS_def [THEN eq_reflection, THEN def_fix_ind])
  apply simp_all
  apply (rule monofun_cfun_arg)
  apply (rule monofun_cfun_arg)
  apply assumption
  done
lemma lemma4: "y && YYS << YYS"
  apply (subst YYS_def2)
  back
  apply (rule monofun_cfun_arg)
  apply (rule lemma3)
  done
lemma lemma5: "y && YYS = YYS"
  apply (rule below_antisym)
  apply (rule lemma4)
  apply (rule lemma3)
  done
lemma wir_moel: "YS = YYS"
  apply (rule stream.take_lemma)
  apply (induct_tac n)
  apply (simp (no_asm))
  apply (subst YS_def2)
  apply (subst YYS_def2)
  apply simp
  apply (rule lemma5 [symmetric, THEN subst])
  apply (rule refl)
  done
(* ------------------------------------------------------------------------ *)
(* Zweite L"osung: Bernhard Möller                                          *)
(* statt Beweis von  wir_moel "uber take_lemma beidseitige Inclusion        *)
(* verwendet lemma5                                                         *)
(* ------------------------------------------------------------------------ *)
lemma lemma6: "YYS << YS"
  apply (unfold YYS_def)
  apply (rule fix_least)
  apply (subst beta_cfun)
  apply simp
  apply (simp add: YS_def2 [symmetric])
  done
lemma lemma7: "YS << YYS"
  apply (rule YS_def [THEN eq_reflection, THEN def_fix_ind])
  apply simp_all
  apply (subst lemma5 [symmetric])
  apply (erule monofun_cfun_arg)
  done
lemma wir_moel': "YS = YYS"
  apply (rule below_antisym)
  apply (rule lemma7)
  apply (rule lemma6)
  done
end