src/HOL/Bit_Operations.thy
author haftmann
Mon, 02 Aug 2021 10:01:06 +0000
changeset 74101 d804e93ae9ff
parent 74097 src/HOL/Library/Bit_Operations.thy@6d7be1227d02
child 74108 3146646a43a7
permissions -rw-r--r--
moved theory Bit_Operations into Main corpus

(*  Author:  Florian Haftmann, TUM
*)

section \<open>Bit operations in suitable algebraic structures\<close>

theory Bit_Operations
  imports Presburger Groups_List
begin

subsection \<open>Abstract bit structures\<close>

class semiring_bits = semiring_parity +
  assumes bits_induct [case_names stable rec]:
    \<open>(\<And>a. a div 2 = a \<Longrightarrow> P a)
     \<Longrightarrow> (\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a))
        \<Longrightarrow> P a\<close>
  assumes bits_div_0 [simp]: \<open>0 div a = 0\<close>
    and bits_div_by_1 [simp]: \<open>a div 1 = a\<close>
    and bits_mod_div_trivial [simp]: \<open>a mod b div b = 0\<close>
    and even_succ_div_2 [simp]: \<open>even a \<Longrightarrow> (1 + a) div 2 = a div 2\<close>
    and even_mask_div_iff: \<open>even ((2 ^ m - 1) div 2 ^ n) \<longleftrightarrow> 2 ^ n = 0 \<or> m \<le> n\<close>
    and exp_div_exp_eq: \<open>2 ^ m div 2 ^ n = of_bool (2 ^ m \<noteq> 0 \<and> m \<ge> n) * 2 ^ (m - n)\<close>
    and div_exp_eq: \<open>a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)\<close>
    and mod_exp_eq: \<open>a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\<close>
    and mult_exp_mod_exp_eq: \<open>m \<le> n \<Longrightarrow> (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\<close>
    and div_exp_mod_exp_eq: \<open>a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\<close>
    and even_mult_exp_div_exp_iff: \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> m > n \<or> 2 ^ n = 0 \<or> (m \<le> n \<and> even (a div 2 ^ (n - m)))\<close>
  fixes bit :: \<open>'a \<Rightarrow> nat \<Rightarrow> bool\<close>
  assumes bit_iff_odd: \<open>bit a n \<longleftrightarrow> odd (a div 2 ^ n)\<close>
begin

text \<open>
  Having \<^const>\<open>bit\<close> as definitional class operation
  takes into account that specific instances can be implemented
  differently wrt. code generation.
\<close>

lemma bits_div_by_0 [simp]:
  \<open>a div 0 = 0\<close>
  by (metis add_cancel_right_right bits_mod_div_trivial mod_mult_div_eq mult_not_zero)

lemma bits_1_div_2 [simp]:
  \<open>1 div 2 = 0\<close>
  using even_succ_div_2 [of 0] by simp

lemma bits_1_div_exp [simp]:
  \<open>1 div 2 ^ n = of_bool (n = 0)\<close>
  using div_exp_eq [of 1 1] by (cases n) simp_all

lemma even_succ_div_exp [simp]:
  \<open>(1 + a) div 2 ^ n = a div 2 ^ n\<close> if \<open>even a\<close> and \<open>n > 0\<close>
proof (cases n)
  case 0
  with that show ?thesis
    by simp
next
  case (Suc n)
  with \<open>even a\<close> have \<open>(1 + a) div 2 ^ Suc n = a div 2 ^ Suc n\<close>
  proof (induction n)
    case 0
    then show ?case
      by simp
  next
    case (Suc n)
    then show ?case
      using div_exp_eq [of _ 1 \<open>Suc n\<close>, symmetric]
      by simp
  qed
  with Suc show ?thesis
    by simp
qed

lemma even_succ_mod_exp [simp]:
  \<open>(1 + a) mod 2 ^ n = 1 + (a mod 2 ^ n)\<close> if \<open>even a\<close> and \<open>n > 0\<close>
  using div_mult_mod_eq [of \<open>1 + a\<close> \<open>2 ^ n\<close>] that
  apply simp
  by (metis local.add.left_commute local.add_left_cancel local.div_mult_mod_eq)

lemma bits_mod_by_1 [simp]:
  \<open>a mod 1 = 0\<close>
  using div_mult_mod_eq [of a 1] by simp

lemma bits_mod_0 [simp]:
  \<open>0 mod a = 0\<close>
  using div_mult_mod_eq [of 0 a] by simp

lemma bits_one_mod_two_eq_one [simp]:
  \<open>1 mod 2 = 1\<close>
  by (simp add: mod2_eq_if)

lemma bit_0 [simp]:
  \<open>bit a 0 \<longleftrightarrow> odd a\<close>
  by (simp add: bit_iff_odd)

lemma bit_Suc:
  \<open>bit a (Suc n) \<longleftrightarrow> bit (a div 2) n\<close>
  using div_exp_eq [of a 1 n] by (simp add: bit_iff_odd)

lemma bit_rec:
  \<open>bit a n \<longleftrightarrow> (if n = 0 then odd a else bit (a div 2) (n - 1))\<close>
  by (cases n) (simp_all add: bit_Suc)

lemma bit_0_eq [simp]:
  \<open>bit 0 = bot\<close>
  by (simp add: fun_eq_iff bit_iff_odd)

context
  fixes a
  assumes stable: \<open>a div 2 = a\<close>
begin

lemma bits_stable_imp_add_self:
  \<open>a + a mod 2 = 0\<close>
proof -
  have \<open>a div 2 * 2 + a mod 2 = a\<close>
    by (fact div_mult_mod_eq)
  then have \<open>a * 2 + a mod 2 = a\<close>
    by (simp add: stable)
  then show ?thesis
    by (simp add: mult_2_right ac_simps)
qed

lemma stable_imp_bit_iff_odd:
  \<open>bit a n \<longleftrightarrow> odd a\<close>
  by (induction n) (simp_all add: stable bit_Suc)

end

lemma bit_iff_idd_imp_stable:
  \<open>a div 2 = a\<close> if \<open>\<And>n. bit a n \<longleftrightarrow> odd a\<close>
using that proof (induction a rule: bits_induct)
  case (stable a)
  then show ?case
    by simp
next
  case (rec a b)
  from rec.prems [of 1] have [simp]: \<open>b = odd a\<close>
    by (simp add: rec.hyps bit_Suc)
  from rec.hyps have hyp: \<open>(of_bool (odd a) + 2 * a) div 2 = a\<close>
    by simp
  have \<open>bit a n \<longleftrightarrow> odd a\<close> for n
    using rec.prems [of \<open>Suc n\<close>] by (simp add: hyp bit_Suc)
  then have \<open>a div 2 = a\<close>
    by (rule rec.IH)
  then have \<open>of_bool (odd a) + 2 * a = 2 * (a div 2) + of_bool (odd a)\<close>
    by (simp add: ac_simps)
  also have \<open>\<dots> = a\<close>
    using mult_div_mod_eq [of 2 a]
    by (simp add: of_bool_odd_eq_mod_2)
  finally show ?case
    using \<open>a div 2 = a\<close> by (simp add: hyp)
qed

lemma exp_eq_0_imp_not_bit:
  \<open>\<not> bit a n\<close> if \<open>2 ^ n = 0\<close>
  using that by (simp add: bit_iff_odd)

lemma bit_eqI:
  \<open>a = b\<close> if \<open>\<And>n. 2 ^ n \<noteq> 0 \<Longrightarrow> bit a n \<longleftrightarrow> bit b n\<close>
proof -
  have \<open>bit a n \<longleftrightarrow> bit b n\<close> for n
  proof (cases \<open>2 ^ n = 0\<close>)
    case True
    then show ?thesis
      by (simp add: exp_eq_0_imp_not_bit)
  next
    case False
    then show ?thesis
      by (rule that)
  qed
  then show ?thesis proof (induction a arbitrary: b rule: bits_induct)
    case (stable a)
    from stable(2) [of 0] have **: \<open>even b \<longleftrightarrow> even a\<close>
      by simp
    have \<open>b div 2 = b\<close>
    proof (rule bit_iff_idd_imp_stable)
      fix n
      from stable have *: \<open>bit b n \<longleftrightarrow> bit a n\<close>
        by simp
      also have \<open>bit a n \<longleftrightarrow> odd a\<close>
        using stable by (simp add: stable_imp_bit_iff_odd)
      finally show \<open>bit b n \<longleftrightarrow> odd b\<close>
        by (simp add: **)
    qed
    from ** have \<open>a mod 2 = b mod 2\<close>
      by (simp add: mod2_eq_if)
    then have \<open>a mod 2 + (a + b) = b mod 2 + (a + b)\<close>
      by simp
    then have \<open>a + a mod 2 + b = b + b mod 2 + a\<close>
      by (simp add: ac_simps)
    with \<open>a div 2 = a\<close> \<open>b div 2 = b\<close> show ?case
      by (simp add: bits_stable_imp_add_self)
  next
    case (rec a p)
    from rec.prems [of 0] have [simp]: \<open>p = odd b\<close>
      by simp
    from rec.hyps have \<open>bit a n \<longleftrightarrow> bit (b div 2) n\<close> for n
      using rec.prems [of \<open>Suc n\<close>] by (simp add: bit_Suc)
    then have \<open>a = b div 2\<close>
      by (rule rec.IH)
    then have \<open>2 * a = 2 * (b div 2)\<close>
      by simp
    then have \<open>b mod 2 + 2 * a = b mod 2 + 2 * (b div 2)\<close>
      by simp
    also have \<open>\<dots> = b\<close>
      by (fact mod_mult_div_eq)
    finally show ?case
      by (auto simp add: mod2_eq_if)
  qed
qed

lemma bit_eq_iff:
  \<open>a = b \<longleftrightarrow> (\<forall>n. bit a n \<longleftrightarrow> bit b n)\<close>
  by (auto intro: bit_eqI)

named_theorems bit_simps \<open>Simplification rules for \<^const>\<open>bit\<close>\<close>

lemma bit_exp_iff [bit_simps]:
  \<open>bit (2 ^ m) n \<longleftrightarrow> 2 ^ m \<noteq> 0 \<and> m = n\<close>
  by (auto simp add: bit_iff_odd exp_div_exp_eq)

lemma bit_1_iff [bit_simps]:
  \<open>bit 1 n \<longleftrightarrow> 1 \<noteq> 0 \<and> n = 0\<close>
  using bit_exp_iff [of 0 n] by simp

lemma bit_2_iff [bit_simps]:
  \<open>bit 2 n \<longleftrightarrow> 2 \<noteq> 0 \<and> n = 1\<close>
  using bit_exp_iff [of 1 n] by auto

lemma even_bit_succ_iff:
  \<open>bit (1 + a) n \<longleftrightarrow> bit a n \<or> n = 0\<close> if \<open>even a\<close>
  using that by (cases \<open>n = 0\<close>) (simp_all add: bit_iff_odd)

lemma odd_bit_iff_bit_pred:
  \<open>bit a n \<longleftrightarrow> bit (a - 1) n \<or> n = 0\<close> if \<open>odd a\<close>
proof -
  from \<open>odd a\<close> obtain b where \<open>a = 2 * b + 1\<close> ..
  moreover have \<open>bit (2 * b) n \<or> n = 0 \<longleftrightarrow> bit (1 + 2 * b) n\<close>
    using even_bit_succ_iff by simp
  ultimately show ?thesis by (simp add: ac_simps)
qed

lemma bit_double_iff [bit_simps]:
  \<open>bit (2 * a) n \<longleftrightarrow> bit a (n - 1) \<and> n \<noteq> 0 \<and> 2 ^ n \<noteq> 0\<close>
  using even_mult_exp_div_exp_iff [of a 1 n]
  by (cases n, auto simp add: bit_iff_odd ac_simps)

lemma bit_eq_rec:
  \<open>a = b \<longleftrightarrow> (even a \<longleftrightarrow> even b) \<and> a div 2 = b div 2\<close> (is \<open>?P = ?Q\<close>)
proof
  assume ?P
  then show ?Q
    by simp
next
  assume ?Q
  then have \<open>even a \<longleftrightarrow> even b\<close> and \<open>a div 2 = b div 2\<close>
    by simp_all
  show ?P
  proof (rule bit_eqI)
    fix n
    show \<open>bit a n \<longleftrightarrow> bit b n\<close>
    proof (cases n)
      case 0
      with \<open>even a \<longleftrightarrow> even b\<close> show ?thesis
        by simp
    next
      case (Suc n)
      moreover from \<open>a div 2 = b div 2\<close> have \<open>bit (a div 2) n = bit (b div 2) n\<close>
        by simp
      ultimately show ?thesis
        by (simp add: bit_Suc)
    qed
  qed
qed

lemma bit_mod_2_iff [simp]:
  \<open>bit (a mod 2) n \<longleftrightarrow> n = 0 \<and> odd a\<close>
  by (cases a rule: parity_cases) (simp_all add: bit_iff_odd)

lemma bit_mask_iff:
  \<open>bit (2 ^ m - 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
  by (simp add: bit_iff_odd even_mask_div_iff not_le)

lemma bit_Numeral1_iff [simp]:
  \<open>bit (numeral Num.One) n \<longleftrightarrow> n = 0\<close>
  by (simp add: bit_rec)

lemma exp_add_not_zero_imp:
  \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close> if \<open>2 ^ (m + n) \<noteq> 0\<close>
proof -
  have \<open>\<not> (2 ^ m = 0 \<or> 2 ^ n = 0)\<close>
  proof (rule notI)
    assume \<open>2 ^ m = 0 \<or> 2 ^ n = 0\<close>
    then have \<open>2 ^ (m + n) = 0\<close>
      by (rule disjE) (simp_all add: power_add)
    with that show False ..
  qed
  then show \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close>
    by simp_all
qed

lemma bit_disjunctive_add_iff:
  \<open>bit (a + b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
  if \<open>\<And>n. \<not> bit a n \<or> \<not> bit b n\<close>
proof (cases \<open>2 ^ n = 0\<close>)
  case True
  then show ?thesis
    by (simp add: exp_eq_0_imp_not_bit)
next
  case False
  with that show ?thesis proof (induction n arbitrary: a b)
    case 0
    from "0.prems"(1) [of 0] show ?case
      by auto
  next
    case (Suc n)
    from Suc.prems(1) [of 0] have even: \<open>even a \<or> even b\<close>
      by auto
    have bit: \<open>\<not> bit (a div 2) n \<or> \<not> bit (b div 2) n\<close> for n
      using Suc.prems(1) [of \<open>Suc n\<close>] by (simp add: bit_Suc)
    from Suc.prems(2) have \<open>2 * 2 ^ n \<noteq> 0\<close> \<open>2 ^ n \<noteq> 0\<close>
      by (auto simp add: mult_2)
    have \<open>a + b = (a div 2 * 2 + a mod 2) + (b div 2 * 2 + b mod 2)\<close>
      using div_mult_mod_eq [of a 2] div_mult_mod_eq [of b 2] by simp
    also have \<open>\<dots> = of_bool (odd a \<or> odd b) + 2 * (a div 2 + b div 2)\<close>
      using even by (auto simp add: algebra_simps mod2_eq_if)
    finally have \<open>bit ((a + b) div 2) n \<longleftrightarrow> bit (a div 2 + b div 2) n\<close>
      using \<open>2 * 2 ^ n \<noteq> 0\<close> by simp (simp_all flip: bit_Suc add: bit_double_iff)
    also have \<open>\<dots> \<longleftrightarrow> bit (a div 2) n \<or> bit (b div 2) n\<close>
      using bit \<open>2 ^ n \<noteq> 0\<close> by (rule Suc.IH)
    finally show ?case
      by (simp add: bit_Suc)
  qed
qed

lemma
  exp_add_not_zero_imp_left: \<open>2 ^ m \<noteq> 0\<close>
  and exp_add_not_zero_imp_right: \<open>2 ^ n \<noteq> 0\<close>
  if \<open>2 ^ (m + n) \<noteq> 0\<close>
proof -
  have \<open>\<not> (2 ^ m = 0 \<or> 2 ^ n = 0)\<close>
  proof (rule notI)
    assume \<open>2 ^ m = 0 \<or> 2 ^ n = 0\<close>
    then have \<open>2 ^ (m + n) = 0\<close>
      by (rule disjE) (simp_all add: power_add)
    with that show False ..
  qed
  then show \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close>
    by simp_all
qed

lemma exp_not_zero_imp_exp_diff_not_zero:
  \<open>2 ^ (n - m) \<noteq> 0\<close> if \<open>2 ^ n \<noteq> 0\<close>
proof (cases \<open>m \<le> n\<close>)
  case True
  moreover define q where \<open>q = n - m\<close>
  ultimately have \<open>n = m + q\<close>
    by simp
  with that show ?thesis
    by (simp add: exp_add_not_zero_imp_right)
next
  case False
  with that show ?thesis
    by simp
qed

end

lemma nat_bit_induct [case_names zero even odd]:
  "P n" if zero: "P 0"
    and even: "\<And>n. P n \<Longrightarrow> n > 0 \<Longrightarrow> P (2 * n)"
    and odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
proof (induction n rule: less_induct)
  case (less n)
  show "P n"
  proof (cases "n = 0")
    case True with zero show ?thesis by simp
  next
    case False
    with less have hyp: "P (n div 2)" by simp
    show ?thesis
    proof (cases "even n")
      case True
      then have "n \<noteq> 1"
        by auto
      with \<open>n \<noteq> 0\<close> have "n div 2 > 0"
        by simp
      with \<open>even n\<close> hyp even [of "n div 2"] show ?thesis
        by simp
    next
      case False
      with hyp odd [of "n div 2"] show ?thesis
        by simp
    qed
  qed
qed

instantiation nat :: semiring_bits
begin

definition bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> bool\<close>
  where \<open>bit_nat m n \<longleftrightarrow> odd (m div 2 ^ n)\<close>

instance
proof
  show \<open>P n\<close> if stable: \<open>\<And>n. n div 2 = n \<Longrightarrow> P n\<close>
    and rec: \<open>\<And>n b. P n \<Longrightarrow> (of_bool b + 2 * n) div 2 = n \<Longrightarrow> P (of_bool b + 2 * n)\<close>
    for P and n :: nat
  proof (induction n rule: nat_bit_induct)
    case zero
    from stable [of 0] show ?case
      by simp
  next
    case (even n)
    with rec [of n False] show ?case
      by simp
  next
    case (odd n)
    with rec [of n True] show ?case
      by simp
  qed
  show \<open>q mod 2 ^ m mod 2 ^ n = q mod 2 ^ min m n\<close>
    for q m n :: nat
    apply (auto simp add: less_iff_Suc_add power_add mod_mod_cancel split: split_min_lin)
    apply (metis div_mult2_eq mod_div_trivial mod_eq_self_iff_div_eq_0 mod_mult_self2_is_0 power_commutes)
    done
  show \<open>(q * 2 ^ m) mod (2 ^ n) = (q mod 2 ^ (n - m)) * 2 ^ m\<close> if \<open>m \<le> n\<close>
    for q m n :: nat
    using that
    apply (auto simp add: mod_mod_cancel div_mult2_eq power_add mod_mult2_eq le_iff_add split: split_min_lin)
    done
  show \<open>even ((2 ^ m - (1::nat)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::nat) \<or> m \<le> n\<close>
    for m n :: nat
    using even_mask_div_iff' [where ?'a = nat, of m n] by simp
  show \<open>even (q * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::nat) ^ n = 0 \<or> m \<le> n \<and> even (q div 2 ^ (n - m))\<close>
    for m n q r :: nat
    apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
    apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc)
    done
qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff bit_nat_def)

end

lemma int_bit_induct [case_names zero minus even odd]:
  "P k" if zero_int: "P 0"
    and minus_int: "P (- 1)"
    and even_int: "\<And>k. P k \<Longrightarrow> k \<noteq> 0 \<Longrightarrow> P (k * 2)"
    and odd_int: "\<And>k. P k \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> P (1 + (k * 2))" for k :: int
proof (cases "k \<ge> 0")
  case True
  define n where "n = nat k"
  with True have "k = int n"
    by simp
  then show "P k"
  proof (induction n arbitrary: k rule: nat_bit_induct)
    case zero
    then show ?case
      by (simp add: zero_int)
  next
    case (even n)
    have "P (int n * 2)"
      by (rule even_int) (use even in simp_all)
    with even show ?case
      by (simp add: ac_simps)
  next
    case (odd n)
    have "P (1 + (int n * 2))"
      by (rule odd_int) (use odd in simp_all)
    with odd show ?case
      by (simp add: ac_simps)
  qed
next
  case False
  define n where "n = nat (- k - 1)"
  with False have "k = - int n - 1"
    by simp
  then show "P k"
  proof (induction n arbitrary: k rule: nat_bit_induct)
    case zero
    then show ?case
      by (simp add: minus_int)
  next
    case (even n)
    have "P (1 + (- int (Suc n) * 2))"
      by (rule odd_int) (use even in \<open>simp_all add: algebra_simps\<close>)
    also have "\<dots> = - int (2 * n) - 1"
      by (simp add: algebra_simps)
    finally show ?case
      using even.prems by simp
  next
    case (odd n)
    have "P (- int (Suc n) * 2)"
      by (rule even_int) (use odd in \<open>simp_all add: algebra_simps\<close>)
    also have "\<dots> = - int (Suc (2 * n)) - 1"
      by (simp add: algebra_simps)
    finally show ?case
      using odd.prems by simp
  qed
qed

context semiring_bits
begin

lemma bit_of_bool_iff [bit_simps]:
  \<open>bit (of_bool b) n \<longleftrightarrow> b \<and> n = 0\<close>
  by (simp add: bit_1_iff)

lemma even_of_nat_iff:
  \<open>even (of_nat n) \<longleftrightarrow> even n\<close>
  by (induction n rule: nat_bit_induct) simp_all

lemma bit_of_nat_iff [bit_simps]:
  \<open>bit (of_nat m) n \<longleftrightarrow> (2::'a) ^ n \<noteq> 0 \<and> bit m n\<close>
proof (cases \<open>(2::'a) ^ n = 0\<close>)
  case True
  then show ?thesis
    by (simp add: exp_eq_0_imp_not_bit)
next
  case False
  then have \<open>bit (of_nat m) n \<longleftrightarrow> bit m n\<close>
  proof (induction m arbitrary: n rule: nat_bit_induct)
    case zero
    then show ?case
      by simp
  next
    case (even m)
    then show ?case
      by (cases n)
        (auto simp add: bit_double_iff Bit_Operations.bit_double_iff dest: mult_not_zero)
  next
    case (odd m)
    then show ?case
      by (cases n)
         (auto simp add: bit_double_iff even_bit_succ_iff Bit_Operations.bit_Suc dest: mult_not_zero)
  qed
  with False show ?thesis
    by simp
qed

end

instantiation int :: semiring_bits
begin

definition bit_int :: \<open>int \<Rightarrow> nat \<Rightarrow> bool\<close>
  where \<open>bit_int k n \<longleftrightarrow> odd (k div 2 ^ n)\<close>

instance
proof
  show \<open>P k\<close> if stable: \<open>\<And>k. k div 2 = k \<Longrightarrow> P k\<close>
    and rec: \<open>\<And>k b. P k \<Longrightarrow> (of_bool b + 2 * k) div 2 = k \<Longrightarrow> P (of_bool b + 2 * k)\<close>
    for P and k :: int
  proof (induction k rule: int_bit_induct)
    case zero
    from stable [of 0] show ?case
      by simp
  next
    case minus
    from stable [of \<open>- 1\<close>] show ?case
      by simp
  next
    case (even k)
    with rec [of k False] show ?case
      by (simp add: ac_simps)
  next
    case (odd k)
    with rec [of k True] show ?case
      by (simp add: ac_simps)
  qed
  show \<open>(2::int) ^ m div 2 ^ n = of_bool ((2::int) ^ m \<noteq> 0 \<and> n \<le> m) * 2 ^ (m - n)\<close>
    for m n :: nat
  proof (cases \<open>m < n\<close>)
    case True
    then have \<open>n = m + (n - m)\<close>
      by simp
    then have \<open>(2::int) ^ m div 2 ^ n = (2::int) ^ m div 2 ^ (m + (n - m))\<close>
      by simp
    also have \<open>\<dots> = (2::int) ^ m div (2 ^ m * 2 ^ (n - m))\<close>
      by (simp add: power_add)
    also have \<open>\<dots> = (2::int) ^ m div 2 ^ m div 2 ^ (n - m)\<close>
      by (simp add: zdiv_zmult2_eq)
    finally show ?thesis using \<open>m < n\<close> by simp
  next
    case False
    then show ?thesis
      by (simp add: power_diff)
  qed
  show \<open>k mod 2 ^ m mod 2 ^ n = k mod 2 ^ min m n\<close>
    for m n :: nat and k :: int
    using mod_exp_eq [of \<open>nat k\<close> m n]
    apply (auto simp add: mod_mod_cancel zdiv_zmult2_eq power_add zmod_zmult2_eq le_iff_add split: split_min_lin)
     apply (auto simp add: less_iff_Suc_add mod_mod_cancel power_add)
    apply (simp only: flip: mult.left_commute [of \<open>2 ^ m\<close>])
    apply (subst zmod_zmult2_eq) apply simp_all
    done
  show \<open>(k * 2 ^ m) mod (2 ^ n) = (k mod 2 ^ (n - m)) * 2 ^ m\<close>
    if \<open>m \<le> n\<close> for m n :: nat and k :: int
    using that
    apply (auto simp add: power_add zmod_zmult2_eq le_iff_add split: split_min_lin)
    done
  show \<open>even ((2 ^ m - (1::int)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::int) \<or> m \<le> n\<close>
    for m n :: nat
    using even_mask_div_iff' [where ?'a = int, of m n] by simp
  show \<open>even (k * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::int) ^ n = 0 \<or> m \<le> n \<and> even (k div 2 ^ (n - m))\<close>
    for m n :: nat and k l :: int
    apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
    apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2))
    done
qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le bit_int_def)

end

class semiring_bit_shifts = semiring_bits +
  fixes push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  assumes push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close>
  fixes drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  assumes drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close>
  fixes take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  assumes take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close>
begin

text \<open>
  Logically, \<^const>\<open>push_bit\<close>,
  \<^const>\<open>drop_bit\<close> and \<^const>\<open>take_bit\<close> are just aliases; having them
  as separate operations makes proofs easier, otherwise proof automation
  would fiddle with concrete expressions \<^term>\<open>2 ^ n\<close> in a way obfuscating the basic
  algebraic relationships between those operations.
  Having
  them as definitional class operations
  takes into account that specific instances of these can be implemented
  differently wrt. code generation.
\<close>

lemma bit_iff_odd_drop_bit:
  \<open>bit a n \<longleftrightarrow> odd (drop_bit n a)\<close>
  by (simp add: bit_iff_odd drop_bit_eq_div)

lemma even_drop_bit_iff_not_bit:
  \<open>even (drop_bit n a) \<longleftrightarrow> \<not> bit a n\<close>
  by (simp add: bit_iff_odd_drop_bit)

lemma div_push_bit_of_1_eq_drop_bit:
  \<open>a div push_bit n 1 = drop_bit n a\<close>
  by (simp add: push_bit_eq_mult drop_bit_eq_div)

lemma bits_ident:
  "push_bit n (drop_bit n a) + take_bit n a = a"
  using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div)

lemma push_bit_push_bit [simp]:
  "push_bit m (push_bit n a) = push_bit (m + n) a"
  by (simp add: push_bit_eq_mult power_add ac_simps)

lemma push_bit_0_id [simp]:
  "push_bit 0 = id"
  by (simp add: fun_eq_iff push_bit_eq_mult)

lemma push_bit_of_0 [simp]:
  "push_bit n 0 = 0"
  by (simp add: push_bit_eq_mult)

lemma push_bit_of_1:
  "push_bit n 1 = 2 ^ n"
  by (simp add: push_bit_eq_mult)

lemma push_bit_Suc [simp]:
  "push_bit (Suc n) a = push_bit n (a * 2)"
  by (simp add: push_bit_eq_mult ac_simps)

lemma push_bit_double:
  "push_bit n (a * 2) = push_bit n a * 2"
  by (simp add: push_bit_eq_mult ac_simps)

lemma push_bit_add:
  "push_bit n (a + b) = push_bit n a + push_bit n b"
  by (simp add: push_bit_eq_mult algebra_simps)

lemma push_bit_numeral [simp]:
  \<open>push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\<close>
  by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0)

lemma take_bit_0 [simp]:
  "take_bit 0 a = 0"
  by (simp add: take_bit_eq_mod)

lemma take_bit_Suc:
  \<open>take_bit (Suc n) a = take_bit n (a div 2) * 2 + a mod 2\<close>
proof -
  have \<open>take_bit (Suc n) (a div 2 * 2 + of_bool (odd a)) = take_bit n (a div 2) * 2 + of_bool (odd a)\<close>
    using even_succ_mod_exp [of \<open>2 * (a div 2)\<close> \<open>Suc n\<close>]
      mult_exp_mod_exp_eq [of 1 \<open>Suc n\<close> \<open>a div 2\<close>]
    by (auto simp add: take_bit_eq_mod ac_simps)
  then show ?thesis
    using div_mult_mod_eq [of a 2] by (simp add: mod_2_eq_odd)
qed

lemma take_bit_rec:
  \<open>take_bit n a = (if n = 0 then 0 else take_bit (n - 1) (a div 2) * 2 + a mod 2)\<close>
  by (cases n) (simp_all add: take_bit_Suc)

lemma take_bit_Suc_0 [simp]:
  \<open>take_bit (Suc 0) a = a mod 2\<close>
  by (simp add: take_bit_eq_mod)

lemma take_bit_of_0 [simp]:
  "take_bit n 0 = 0"
  by (simp add: take_bit_eq_mod)

lemma take_bit_of_1 [simp]:
  "take_bit n 1 = of_bool (n > 0)"
  by (cases n) (simp_all add: take_bit_Suc)

lemma drop_bit_of_0 [simp]:
  "drop_bit n 0 = 0"
  by (simp add: drop_bit_eq_div)

lemma drop_bit_of_1 [simp]:
  "drop_bit n 1 = of_bool (n = 0)"
  by (simp add: drop_bit_eq_div)

lemma drop_bit_0 [simp]:
  "drop_bit 0 = id"
  by (simp add: fun_eq_iff drop_bit_eq_div)

lemma drop_bit_Suc:
  "drop_bit (Suc n) a = drop_bit n (a div 2)"
  using div_exp_eq [of a 1] by (simp add: drop_bit_eq_div)

lemma drop_bit_rec:
  "drop_bit n a = (if n = 0 then a else drop_bit (n - 1) (a div 2))"
  by (cases n) (simp_all add: drop_bit_Suc)

lemma drop_bit_half:
  "drop_bit n (a div 2) = drop_bit n a div 2"
  by (induction n arbitrary: a) (simp_all add: drop_bit_Suc)

lemma drop_bit_of_bool [simp]:
  "drop_bit n (of_bool b) = of_bool (n = 0 \<and> b)"
  by (cases n) simp_all

lemma even_take_bit_eq [simp]:
  \<open>even (take_bit n a) \<longleftrightarrow> n = 0 \<or> even a\<close>
  by (simp add: take_bit_rec [of n a])

lemma take_bit_take_bit [simp]:
  "take_bit m (take_bit n a) = take_bit (min m n) a"
  by (simp add: take_bit_eq_mod mod_exp_eq ac_simps)

lemma drop_bit_drop_bit [simp]:
  "drop_bit m (drop_bit n a) = drop_bit (m + n) a"
  by (simp add: drop_bit_eq_div power_add div_exp_eq ac_simps)

lemma push_bit_take_bit:
  "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)"
  apply (simp add: push_bit_eq_mult take_bit_eq_mod power_add ac_simps)
  using mult_exp_mod_exp_eq [of m \<open>m + n\<close> a] apply (simp add: ac_simps power_add)
  done

lemma take_bit_push_bit:
  "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)"
proof (cases "m \<le> n")
  case True
  then show ?thesis
    apply (simp add:)
    apply (simp_all add: push_bit_eq_mult take_bit_eq_mod)
    apply (auto dest!: le_Suc_ex simp add: power_add ac_simps)
    using mult_exp_mod_exp_eq [of m m \<open>a * 2 ^ n\<close> for n]
    apply (simp add: ac_simps)
    done
next
  case False
  then show ?thesis
    using push_bit_take_bit [of n "m - n" a]
    by simp
qed

lemma take_bit_drop_bit:
  "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)"
  by (simp add: drop_bit_eq_div take_bit_eq_mod ac_simps div_exp_mod_exp_eq)

lemma drop_bit_take_bit:
  "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)"
proof (cases "m \<le> n")
  case True
  then show ?thesis
    using take_bit_drop_bit [of "n - m" m a] by simp
next
  case False
  then obtain q where \<open>m = n + q\<close>
    by (auto simp add: not_le dest: less_imp_Suc_add)
  then have \<open>drop_bit m (take_bit n a) = 0\<close>
    using div_exp_eq [of \<open>a mod 2 ^ n\<close> n q]
    by (simp add: take_bit_eq_mod drop_bit_eq_div)
  with False show ?thesis
    by simp
qed

lemma even_push_bit_iff [simp]:
  \<open>even (push_bit n a) \<longleftrightarrow> n \<noteq> 0 \<or> even a\<close>
  by (simp add: push_bit_eq_mult) auto

lemma bit_push_bit_iff [bit_simps]:
  \<open>bit (push_bit m a) n \<longleftrightarrow> m \<le> n \<and> 2 ^ n \<noteq> 0 \<and> bit a (n - m)\<close>
  by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff)

lemma bit_drop_bit_eq [bit_simps]:
  \<open>bit (drop_bit n a) = bit a \<circ> (+) n\<close>
  by (simp add: bit_iff_odd fun_eq_iff ac_simps flip: drop_bit_eq_div)

lemma bit_take_bit_iff [bit_simps]:
  \<open>bit (take_bit m a) n \<longleftrightarrow> n < m \<and> bit a n\<close>
  by (simp add: bit_iff_odd drop_bit_take_bit not_le flip: drop_bit_eq_div)

lemma stable_imp_drop_bit_eq:
  \<open>drop_bit n a = a\<close>
  if \<open>a div 2 = a\<close>
  by (induction n) (simp_all add: that drop_bit_Suc)

lemma stable_imp_take_bit_eq:
  \<open>take_bit n a = (if even a then 0 else 2 ^ n - 1)\<close>
    if \<open>a div 2 = a\<close>
proof (rule bit_eqI)
  fix m
  assume \<open>2 ^ m \<noteq> 0\<close>
  with that show \<open>bit (take_bit n a) m \<longleftrightarrow> bit (if even a then 0 else 2 ^ n - 1) m\<close>
    by (simp add: bit_take_bit_iff bit_mask_iff stable_imp_bit_iff_odd)
qed

lemma exp_dvdE:
  assumes \<open>2 ^ n dvd a\<close>
  obtains b where \<open>a = push_bit n b\<close>
proof -
  from assms obtain b where \<open>a = 2 ^ n * b\<close> ..
  then have \<open>a = push_bit n b\<close>
    by (simp add: push_bit_eq_mult ac_simps)
  with that show thesis .
qed

lemma take_bit_eq_0_iff:
  \<open>take_bit n a = 0 \<longleftrightarrow> 2 ^ n dvd a\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
proof
  assume ?P
  then show ?Q
    by (simp add: take_bit_eq_mod mod_0_imp_dvd)
next
  assume ?Q
  then obtain b where \<open>a = push_bit n b\<close>
    by (rule exp_dvdE)
  then show ?P
    by (simp add: take_bit_push_bit)
qed

lemma take_bit_tightened:
  \<open>take_bit m a = take_bit m b\<close> if \<open>take_bit n a = take_bit n b\<close> and \<open>m \<le> n\<close> 
proof -
  from that have \<open>take_bit m (take_bit n a) = take_bit m (take_bit n b)\<close>
    by simp
  then have \<open>take_bit (min m n) a = take_bit (min m n) b\<close>
    by simp
  with that show ?thesis
    by (simp add: min_def)
qed

lemma take_bit_eq_self_iff_drop_bit_eq_0:
  \<open>take_bit n a = a \<longleftrightarrow> drop_bit n a = 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
proof
  assume ?P
  show ?Q
  proof (rule bit_eqI)
    fix m
    from \<open>?P\<close> have \<open>a = take_bit n a\<close> ..
    also have \<open>\<not> bit (take_bit n a) (n + m)\<close>
      unfolding bit_simps
      by (simp add: bit_simps) 
    finally show \<open>bit (drop_bit n a) m \<longleftrightarrow> bit 0 m\<close>
      by (simp add: bit_simps)
  qed
next
  assume ?Q
  show ?P
  proof (rule bit_eqI)
    fix m
    from \<open>?Q\<close> have \<open>\<not> bit (drop_bit n a) (m - n)\<close>
      by simp
    then have \<open> \<not> bit a (n + (m - n))\<close>
      by (simp add: bit_simps)
    then show \<open>bit (take_bit n a) m \<longleftrightarrow> bit a m\<close>
      by (cases \<open>m < n\<close>) (auto simp add: bit_simps)
  qed
qed

lemma drop_bit_exp_eq:
  \<open>drop_bit m (2 ^ n) = of_bool (m \<le> n \<and> 2 ^ n \<noteq> 0) * 2 ^ (n - m)\<close>
  by (rule bit_eqI) (auto simp add: bit_simps)

end

instantiation nat :: semiring_bit_shifts
begin

definition push_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>push_bit_nat n m = m * 2 ^ n\<close>

definition drop_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>drop_bit_nat n m = m div 2 ^ n\<close>

definition take_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>take_bit_nat n m = m mod 2 ^ n\<close>

instance
  by standard (simp_all add: push_bit_nat_def drop_bit_nat_def take_bit_nat_def)

end

context semiring_bit_shifts
begin

lemma push_bit_of_nat:
  \<open>push_bit n (of_nat m) = of_nat (push_bit n m)\<close>
  by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)

lemma of_nat_push_bit:
  \<open>of_nat (push_bit m n) = push_bit m (of_nat n)\<close>
  by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)

lemma take_bit_of_nat:
  \<open>take_bit n (of_nat m) = of_nat (take_bit n m)\<close>
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff)

lemma of_nat_take_bit:
  \<open>of_nat (take_bit n m) = take_bit n (of_nat m)\<close>
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff)

end

instantiation int :: semiring_bit_shifts
begin

definition push_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>push_bit_int n k = k * 2 ^ n\<close>

definition drop_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>drop_bit_int n k = k div 2 ^ n\<close>

definition take_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>take_bit_int n k = k mod 2 ^ n\<close>

instance
  by standard (simp_all add: push_bit_int_def drop_bit_int_def take_bit_int_def)

end

lemma bit_push_bit_iff_nat:
  \<open>bit (push_bit m q) n \<longleftrightarrow> m \<le> n \<and> bit q (n - m)\<close> for q :: nat
  by (auto simp add: bit_push_bit_iff)

lemma bit_push_bit_iff_int:
  \<open>bit (push_bit m k) n \<longleftrightarrow> m \<le> n \<and> bit k (n - m)\<close> for k :: int
  by (auto simp add: bit_push_bit_iff)

lemma take_bit_nat_less_exp [simp]:
  \<open>take_bit n m < 2 ^ n\<close> for n m ::nat 
  by (simp add: take_bit_eq_mod)

lemma take_bit_nonnegative [simp]:
  \<open>take_bit n k \<ge> 0\<close> for k :: int
  by (simp add: take_bit_eq_mod)

lemma not_take_bit_negative [simp]:
  \<open>\<not> take_bit n k < 0\<close> for k :: int
  by (simp add: not_less)

lemma take_bit_int_less_exp [simp]:
  \<open>take_bit n k < 2 ^ n\<close> for k :: int
  by (simp add: take_bit_eq_mod)

lemma take_bit_nat_eq_self_iff:
  \<open>take_bit n m = m \<longleftrightarrow> m < 2 ^ n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  for n m :: nat
proof
  assume ?P
  moreover note take_bit_nat_less_exp [of n m]
  ultimately show ?Q
    by simp
next
  assume ?Q
  then show ?P
    by (simp add: take_bit_eq_mod)
qed

lemma take_bit_nat_eq_self:
  \<open>take_bit n m = m\<close> if \<open>m < 2 ^ n\<close> for m n :: nat
  using that by (simp add: take_bit_nat_eq_self_iff)

lemma take_bit_int_eq_self_iff:
  \<open>take_bit n k = k \<longleftrightarrow> 0 \<le> k \<and> k < 2 ^ n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  for k :: int
proof
  assume ?P
  moreover note take_bit_int_less_exp [of n k] take_bit_nonnegative [of n k]
  ultimately show ?Q
    by simp
next
  assume ?Q
  then show ?P
    by (simp add: take_bit_eq_mod)
qed

lemma take_bit_int_eq_self:
  \<open>take_bit n k = k\<close> if \<open>0 \<le> k\<close> \<open>k < 2 ^ n\<close> for k :: int
  using that by (simp add: take_bit_int_eq_self_iff)

lemma take_bit_nat_less_eq_self [simp]:
  \<open>take_bit n m \<le> m\<close> for n m :: nat
  by (simp add: take_bit_eq_mod)

lemma take_bit_nat_less_self_iff:
  \<open>take_bit n m < m \<longleftrightarrow> 2 ^ n \<le> m\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  for m n :: nat
proof
  assume ?P
  then have \<open>take_bit n m \<noteq> m\<close>
    by simp
  then show \<open>?Q\<close>
    by (simp add: take_bit_nat_eq_self_iff)
next
  have \<open>take_bit n m < 2 ^ n\<close>
    by (fact take_bit_nat_less_exp)
  also assume ?Q
  finally show ?P .
qed

class unique_euclidean_semiring_with_bit_shifts =
  unique_euclidean_semiring_with_nat + semiring_bit_shifts
begin

lemma take_bit_of_exp [simp]:
  \<open>take_bit m (2 ^ n) = of_bool (n < m) * 2 ^ n\<close>
  by (simp add: take_bit_eq_mod exp_mod_exp)

lemma take_bit_of_2 [simp]:
  \<open>take_bit n 2 = of_bool (2 \<le> n) * 2\<close>
  using take_bit_of_exp [of n 1] by simp

lemma take_bit_of_mask:
  \<open>take_bit m (2 ^ n - 1) = 2 ^ min m n - 1\<close>
  by (simp add: take_bit_eq_mod mask_mod_exp)

lemma push_bit_eq_0_iff [simp]:
  "push_bit n a = 0 \<longleftrightarrow> a = 0"
  by (simp add: push_bit_eq_mult)

lemma take_bit_add:
  "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)"
  by (simp add: take_bit_eq_mod mod_simps)

lemma take_bit_of_1_eq_0_iff [simp]:
  "take_bit n 1 = 0 \<longleftrightarrow> n = 0"
  by (simp add: take_bit_eq_mod)

lemma take_bit_Suc_1 [simp]:
  \<open>take_bit (Suc n) 1 = 1\<close>
  by (simp add: take_bit_Suc)

lemma take_bit_Suc_bit0 [simp]:
  \<open>take_bit (Suc n) (numeral (Num.Bit0 k)) = take_bit n (numeral k) * 2\<close>
  by (simp add: take_bit_Suc numeral_Bit0_div_2)

lemma take_bit_Suc_bit1 [simp]:
  \<open>take_bit (Suc n) (numeral (Num.Bit1 k)) = take_bit n (numeral k) * 2 + 1\<close>
  by (simp add: take_bit_Suc numeral_Bit1_div_2 mod_2_eq_odd)

lemma take_bit_numeral_1 [simp]:
  \<open>take_bit (numeral l) 1 = 1\<close>
  by (simp add: take_bit_rec [of \<open>numeral l\<close> 1])

lemma take_bit_numeral_bit0 [simp]:
  \<open>take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2\<close>
  by (simp add: take_bit_rec numeral_Bit0_div_2)

lemma take_bit_numeral_bit1 [simp]:
  \<open>take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1\<close>
  by (simp add: take_bit_rec numeral_Bit1_div_2 mod_2_eq_odd)

lemma drop_bit_Suc_bit0 [simp]:
  \<open>drop_bit (Suc n) (numeral (Num.Bit0 k)) = drop_bit n (numeral k)\<close>
  by (simp add: drop_bit_Suc numeral_Bit0_div_2)

lemma drop_bit_Suc_bit1 [simp]:
  \<open>drop_bit (Suc n) (numeral (Num.Bit1 k)) = drop_bit n (numeral k)\<close>
  by (simp add: drop_bit_Suc numeral_Bit1_div_2)

lemma drop_bit_numeral_bit0 [simp]:
  \<open>drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)\<close>
  by (simp add: drop_bit_rec numeral_Bit0_div_2)

lemma drop_bit_numeral_bit1 [simp]:
  \<open>drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)\<close>
  by (simp add: drop_bit_rec numeral_Bit1_div_2)

lemma drop_bit_of_nat:
  "drop_bit n (of_nat m) = of_nat (drop_bit n m)"
  by (simp add: drop_bit_eq_div Bit_Operations.drop_bit_eq_div of_nat_div [of m "2 ^ n"])

lemma bit_of_nat_iff_bit [bit_simps]:
  \<open>bit (of_nat m) n \<longleftrightarrow> bit m n\<close>
proof -
  have \<open>even (m div 2 ^ n) \<longleftrightarrow> even (of_nat (m div 2 ^ n))\<close>
    by simp
  also have \<open>of_nat (m div 2 ^ n) = of_nat m div of_nat (2 ^ n)\<close>
    by (simp add: of_nat_div)
  finally show ?thesis
    by (simp add: bit_iff_odd semiring_bits_class.bit_iff_odd)
qed

lemma of_nat_drop_bit:
  \<open>of_nat (drop_bit m n) = drop_bit m (of_nat n)\<close>
  by (simp add: drop_bit_eq_div semiring_bit_shifts_class.drop_bit_eq_div of_nat_div)

lemma bit_push_bit_iff_of_nat_iff [bit_simps]:
  \<open>bit (push_bit m (of_nat r)) n \<longleftrightarrow> m \<le> n \<and> bit (of_nat r) (n - m)\<close>
  by (auto simp add: bit_push_bit_iff)

lemma take_bit_sum:
  "take_bit n a = (\<Sum>k = 0..<n. push_bit k (of_bool (bit a k)))"
  for n :: nat
proof (induction n arbitrary: a)
  case 0
  then show ?case
    by simp
next
  case (Suc n)
  have "(\<Sum>k = 0..<Suc n. push_bit k (of_bool (bit a k))) = 
    of_bool (odd a) + (\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (bit a k)))"
    by (simp add: sum.atLeast_Suc_lessThan ac_simps)
  also have "(\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (bit a k)))
    = (\<Sum>k = 0..<n. push_bit k (of_bool (bit (a div 2) k))) * 2"
    by (simp only: sum.atLeast_Suc_lessThan_Suc_shift) (simp add: sum_distrib_right push_bit_double drop_bit_Suc bit_Suc)
  finally show ?case
    using Suc [of "a div 2"] by (simp add: ac_simps take_bit_Suc mod_2_eq_odd)
qed

end

instance nat :: unique_euclidean_semiring_with_bit_shifts ..

instance int :: unique_euclidean_semiring_with_bit_shifts ..

lemma bit_numeral_int_iff [bit_simps]:
  \<open>bit (numeral m :: int) n \<longleftrightarrow> bit (numeral m :: nat) n\<close>
  using bit_of_nat_iff_bit [of \<open>numeral m\<close> n] by simp

lemma bit_not_int_iff':
  \<open>bit (- k - 1) n \<longleftrightarrow> \<not> bit k n\<close>
  for k :: int
proof (induction n arbitrary: k)
  case 0
  show ?case
    by simp
next
  case (Suc n)
  have \<open>- k - 1 = - (k + 2) + 1\<close>
    by simp
  also have \<open>(- (k + 2) + 1) div 2 = - (k div 2) - 1\<close>
  proof (cases \<open>even k\<close>)
    case True
    then have \<open>- k div 2 = - (k div 2)\<close>
      by rule (simp flip: mult_minus_right)
    with True show ?thesis
      by simp
  next
    case False
    have \<open>4 = 2 * (2::int)\<close>
      by simp
    also have \<open>2 * 2 div 2 = (2::int)\<close>
      by (simp only: nonzero_mult_div_cancel_left)
    finally have *: \<open>4 div 2 = (2::int)\<close> .
    from False obtain l where k: \<open>k = 2 * l + 1\<close> ..
    then have \<open>- k - 2 = 2 * - (l + 2) + 1\<close>
      by simp
    then have \<open>(- k - 2) div 2 + 1 = - (k div 2) - 1\<close>
      by (simp flip: mult_minus_right add: *) (simp add: k)
    with False show ?thesis
      by simp
  qed
  finally have \<open>(- k - 1) div 2 = - (k div 2) - 1\<close> .
  with Suc show ?case
    by (simp add: bit_Suc)
qed

lemma bit_minus_int_iff [bit_simps]:
  \<open>bit (- k) n \<longleftrightarrow> \<not> bit (k - 1) n\<close>
  for k :: int
  using bit_not_int_iff' [of \<open>k - 1\<close>] by simp

lemma bit_nat_iff [bit_simps]:
  \<open>bit (nat k) n \<longleftrightarrow> k \<ge> 0 \<and> bit k n\<close>
proof (cases \<open>k \<ge> 0\<close>)
  case True
  moreover define m where \<open>m = nat k\<close>
  ultimately have \<open>k = int m\<close>
    by simp
  then show ?thesis
    by (simp add: bit_simps)
next
  case False
  then show ?thesis
    by simp
qed

lemma bit_numeral_int_simps [simp]:
  \<open>bit (1 :: int) (numeral n) \<longleftrightarrow> bit (0 :: int) (pred_numeral n)\<close>
  \<open>bit (numeral (num.Bit0 w) :: int) (numeral n) \<longleftrightarrow> bit (numeral w :: int) (pred_numeral n)\<close>
  \<open>bit (numeral (num.Bit1 w) :: int) (numeral n) \<longleftrightarrow> bit (numeral w :: int) (pred_numeral n)\<close>
  \<open>bit (numeral (Num.BitM w) :: int) (numeral n) \<longleftrightarrow> \<not> bit (- numeral w :: int) (pred_numeral n)\<close>
  \<open>bit (- numeral (num.Bit0 w) :: int) (numeral n) \<longleftrightarrow> bit (- numeral w :: int) (pred_numeral n)\<close>
  \<open>bit (- numeral (num.Bit1 w) :: int) (numeral n) \<longleftrightarrow> \<not> bit (numeral w :: int) (pred_numeral n)\<close>
  \<open>bit (- numeral (Num.BitM w) :: int) (numeral n) \<longleftrightarrow> bit (- (numeral w) :: int) (pred_numeral n)\<close>
  by (simp_all add: bit_1_iff numeral_eq_Suc bit_Suc add_One sub_inc_One_eq bit_minus_int_iff)

lemma bit_numeral_Bit0_Suc_iff [simp]:
  \<open>bit (numeral (Num.Bit0 m) :: int) (Suc n) \<longleftrightarrow> bit (numeral m :: int) n\<close>
  by (simp add: bit_Suc)

lemma bit_numeral_Bit1_Suc_iff [simp]:
  \<open>bit (numeral (Num.Bit1 m) :: int) (Suc n) \<longleftrightarrow> bit (numeral m :: int) n\<close>
  by (simp add: bit_Suc)

lemma push_bit_nat_eq:
  \<open>push_bit n (nat k) = nat (push_bit n k)\<close>
  by (cases \<open>k \<ge> 0\<close>) (simp_all add: push_bit_eq_mult nat_mult_distrib not_le mult_nonneg_nonpos2)

lemma drop_bit_nat_eq:
  \<open>drop_bit n (nat k) = nat (drop_bit n k)\<close>
  apply (cases \<open>k \<ge> 0\<close>)
   apply (simp_all add: drop_bit_eq_div nat_div_distrib nat_power_eq not_le)
  apply (simp add: divide_int_def)
  done

lemma take_bit_nat_eq:
  \<open>take_bit n (nat k) = nat (take_bit n k)\<close> if \<open>k \<ge> 0\<close>
  using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq)

lemma nat_take_bit_eq:
  \<open>nat (take_bit n k) = take_bit n (nat k)\<close>
  if \<open>k \<ge> 0\<close>
  using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq)

lemma not_exp_less_eq_0_int [simp]:
  \<open>\<not> 2 ^ n \<le> (0::int)\<close>
  by (simp add: power_le_zero_eq)

lemma half_nonnegative_int_iff [simp]:
  \<open>k div 2 \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
proof (cases \<open>k \<ge> 0\<close>)
  case True
  then show ?thesis
    by (auto simp add: divide_int_def sgn_1_pos)
next
  case False
  then show ?thesis
    by (auto simp add: divide_int_def not_le elim!: evenE)
qed

lemma half_negative_int_iff [simp]:
  \<open>k div 2 < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)

lemma push_bit_of_Suc_0 [simp]:
  "push_bit n (Suc 0) = 2 ^ n"
  using push_bit_of_1 [where ?'a = nat] by simp

lemma take_bit_of_Suc_0 [simp]:
  "take_bit n (Suc 0) = of_bool (0 < n)"
  using take_bit_of_1 [where ?'a = nat] by simp

lemma drop_bit_of_Suc_0 [simp]:
  "drop_bit n (Suc 0) = of_bool (n = 0)"
  using drop_bit_of_1 [where ?'a = nat] by simp

lemma push_bit_minus_one:
  "push_bit n (- 1 :: int) = - (2 ^ n)"
  by (simp add: push_bit_eq_mult)

lemma minus_1_div_exp_eq_int:
  \<open>- 1 div (2 :: int) ^ n = - 1\<close>
  by (induction n) (use div_exp_eq [symmetric, of \<open>- 1 :: int\<close> 1] in \<open>simp_all add: ac_simps\<close>)

lemma drop_bit_minus_one [simp]:
  \<open>drop_bit n (- 1 :: int) = - 1\<close>
  by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int)

lemma take_bit_Suc_from_most:
  \<open>take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\<close> for k :: int
  by (simp only: take_bit_eq_mod power_Suc2) (simp_all add: bit_iff_odd odd_iff_mod_2_eq_one zmod_zmult2_eq)

lemma take_bit_minus:
  \<open>take_bit n (- take_bit n k) = take_bit n (- k)\<close>
    for k :: int
  by (simp add: take_bit_eq_mod mod_minus_eq)

lemma take_bit_diff:
  \<open>take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)\<close>
    for k l :: int
  by (simp add: take_bit_eq_mod mod_diff_eq)

lemma bit_imp_take_bit_positive:
  \<open>0 < take_bit m k\<close> if \<open>n < m\<close> and \<open>bit k n\<close> for k :: int
proof (rule ccontr)
  assume \<open>\<not> 0 < take_bit m k\<close>
  then have \<open>take_bit m k = 0\<close>
    by (auto simp add: not_less intro: order_antisym)
  then have \<open>bit (take_bit m k) n = bit 0 n\<close>
    by simp
  with that show False
    by (simp add: bit_take_bit_iff)
qed

lemma take_bit_mult:
  \<open>take_bit n (take_bit n k * take_bit n l) = take_bit n (k * l)\<close>
  for k l :: int
  by (simp add: take_bit_eq_mod mod_mult_eq)

lemma (in ring_1) of_nat_nat_take_bit_eq [simp]:
  \<open>of_nat (nat (take_bit n k)) = of_int (take_bit n k)\<close>
  by simp

lemma take_bit_minus_small_eq:
  \<open>take_bit n (- k) = 2 ^ n - k\<close> if \<open>0 < k\<close> \<open>k \<le> 2 ^ n\<close> for k :: int
proof -
  define m where \<open>m = nat k\<close>
  with that have \<open>k = int m\<close> and \<open>0 < m\<close> and \<open>m \<le> 2 ^ n\<close>
    by simp_all
  have \<open>(2 ^ n - m) mod 2 ^ n = 2 ^ n - m\<close>
    using \<open>0 < m\<close> by simp
  then have \<open>int ((2 ^ n - m) mod 2 ^ n) = int (2 ^ n - m)\<close>
    by simp
  then have \<open>(2 ^ n - int m) mod 2 ^ n = 2 ^ n - int m\<close>
    using \<open>m \<le> 2 ^ n\<close> by (simp only: of_nat_mod of_nat_diff) simp
  with \<open>k = int m\<close> have \<open>(2 ^ n - k) mod 2 ^ n = 2 ^ n - k\<close>
    by simp
  then show ?thesis
    by (simp add: take_bit_eq_mod)
qed

lemma drop_bit_push_bit_int:
  \<open>drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\<close> for k :: int
  by (cases \<open>m \<le> n\<close>) (auto simp add: mult.left_commute [of _ \<open>2 ^ n\<close>] mult.commute [of _ \<open>2 ^ n\<close>] mult.assoc
    mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add)

lemma push_bit_nonnegative_int_iff [simp]:
  \<open>push_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (simp add: push_bit_eq_mult zero_le_mult_iff)

lemma push_bit_negative_int_iff [simp]:
  \<open>push_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)

lemma drop_bit_nonnegative_int_iff [simp]:
  \<open>drop_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (induction n) (simp_all add: drop_bit_Suc drop_bit_half)

lemma drop_bit_negative_int_iff [simp]:
  \<open>drop_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)


subsection \<open>Bit operations\<close>

class semiring_bit_operations = semiring_bit_shifts +
  fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>AND\<close> 64)
    and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>OR\<close>  59)
    and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>XOR\<close> 59)
    and mask :: \<open>nat \<Rightarrow> 'a\<close>
    and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
    and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
    and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  assumes bit_and_iff [bit_simps]: \<open>bit (a AND b) n \<longleftrightarrow> bit a n \<and> bit b n\<close>
    and bit_or_iff [bit_simps]: \<open>bit (a OR b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
    and bit_xor_iff [bit_simps]: \<open>bit (a XOR b) n \<longleftrightarrow> bit a n \<noteq> bit b n\<close>
    and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close>
    and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close>
    and bit_unset_bit_iff [bit_simps]: \<open>bit (unset_bit m a) n \<longleftrightarrow> bit a n \<and> m \<noteq> n\<close>
    and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close>
begin

text \<open>
  We want the bitwise operations to bind slightly weaker
  than \<open>+\<close> and \<open>-\<close>.
  For the sake of code generation
  the operations \<^const>\<open>and\<close>, \<^const>\<open>or\<close> and \<^const>\<open>xor\<close>
  are specified as definitional class operations.
\<close>

sublocale "and": semilattice \<open>(AND)\<close>
  by standard (auto simp add: bit_eq_iff bit_and_iff)

sublocale or: semilattice_neutr \<open>(OR)\<close> 0
  by standard (auto simp add: bit_eq_iff bit_or_iff)

sublocale xor: comm_monoid \<open>(XOR)\<close> 0
  by standard (auto simp add: bit_eq_iff bit_xor_iff)

lemma even_and_iff:
  \<open>even (a AND b) \<longleftrightarrow> even a \<or> even b\<close>
  using bit_and_iff [of a b 0] by auto

lemma even_or_iff:
  \<open>even (a OR b) \<longleftrightarrow> even a \<and> even b\<close>
  using bit_or_iff [of a b 0] by auto

lemma even_xor_iff:
  \<open>even (a XOR b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)\<close>
  using bit_xor_iff [of a b 0] by auto

lemma zero_and_eq [simp]:
  \<open>0 AND a = 0\<close>
  by (simp add: bit_eq_iff bit_and_iff)

lemma and_zero_eq [simp]:
  \<open>a AND 0 = 0\<close>
  by (simp add: bit_eq_iff bit_and_iff)

lemma one_and_eq:
  \<open>1 AND a = a mod 2\<close>
  by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff)

lemma and_one_eq:
  \<open>a AND 1 = a mod 2\<close>
  using one_and_eq [of a] by (simp add: ac_simps)

lemma one_or_eq:
  \<open>1 OR a = a + of_bool (even a)\<close>
  by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff)

lemma or_one_eq:
  \<open>a OR 1 = a + of_bool (even a)\<close>
  using one_or_eq [of a] by (simp add: ac_simps)

lemma one_xor_eq:
  \<open>1 XOR a = a + of_bool (even a) - of_bool (odd a)\<close>
  by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE)

lemma xor_one_eq:
  \<open>a XOR 1 = a + of_bool (even a) - of_bool (odd a)\<close>
  using one_xor_eq [of a] by (simp add: ac_simps)

lemma take_bit_and [simp]:
  \<open>take_bit n (a AND b) = take_bit n a AND take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff)

lemma take_bit_or [simp]:
  \<open>take_bit n (a OR b) = take_bit n a OR take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff)

lemma take_bit_xor [simp]:
  \<open>take_bit n (a XOR b) = take_bit n a XOR take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff)

lemma push_bit_and [simp]:
  \<open>push_bit n (a AND b) = push_bit n a AND push_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_and_iff)

lemma push_bit_or [simp]:
  \<open>push_bit n (a OR b) = push_bit n a OR push_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_or_iff)

lemma push_bit_xor [simp]:
  \<open>push_bit n (a XOR b) = push_bit n a XOR push_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_xor_iff)

lemma drop_bit_and [simp]:
  \<open>drop_bit n (a AND b) = drop_bit n a AND drop_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_and_iff)

lemma drop_bit_or [simp]:
  \<open>drop_bit n (a OR b) = drop_bit n a OR drop_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_or_iff)

lemma drop_bit_xor [simp]:
  \<open>drop_bit n (a XOR b) = drop_bit n a XOR drop_bit n b\<close>
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_xor_iff)

lemma bit_mask_iff [bit_simps]:
  \<open>bit (mask m) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
  by (simp add: mask_eq_exp_minus_1 bit_mask_iff)

lemma even_mask_iff:
  \<open>even (mask n) \<longleftrightarrow> n = 0\<close>
  using bit_mask_iff [of n 0] by auto

lemma mask_0 [simp]:
  \<open>mask 0 = 0\<close>
  by (simp add: mask_eq_exp_minus_1)

lemma mask_Suc_0 [simp]:
  \<open>mask (Suc 0) = 1\<close>
  by (simp add: mask_eq_exp_minus_1 add_implies_diff sym)

lemma mask_Suc_exp:
  \<open>mask (Suc n) = 2 ^ n OR mask n\<close>
  by (rule bit_eqI)
    (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq)

lemma mask_Suc_double:
  \<open>mask (Suc n) = 1 OR 2 * mask n\<close>
proof (rule bit_eqI)
  fix q
  assume \<open>2 ^ q \<noteq> 0\<close>
  show \<open>bit (mask (Suc n)) q \<longleftrightarrow> bit (1 OR 2 * mask n) q\<close>
    by (cases q)
      (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2)
qed

lemma mask_numeral:
  \<open>mask (numeral n) = 1 + 2 * mask (pred_numeral n)\<close>
  by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps)

lemma take_bit_mask [simp]:
  \<open>take_bit m (mask n) = mask (min m n)\<close>
  by (rule bit_eqI) (simp add: bit_simps)

lemma take_bit_eq_mask:
  \<open>take_bit n a = a AND mask n\<close>
  by (rule bit_eqI)
    (auto simp add: bit_take_bit_iff bit_and_iff bit_mask_iff)

lemma or_eq_0_iff:
  \<open>a OR b = 0 \<longleftrightarrow> a = 0 \<and> b = 0\<close>
  by (auto simp add: bit_eq_iff bit_or_iff)

lemma disjunctive_add:
  \<open>a + b = a OR b\<close> if \<open>\<And>n. \<not> bit a n \<or> \<not> bit b n\<close>
  by (rule bit_eqI) (use that in \<open>simp add: bit_disjunctive_add_iff bit_or_iff\<close>)

lemma bit_iff_and_drop_bit_eq_1:
  \<open>bit a n \<longleftrightarrow> drop_bit n a AND 1 = 1\<close>
  by (simp add: bit_iff_odd_drop_bit and_one_eq odd_iff_mod_2_eq_one)

lemma bit_iff_and_push_bit_not_eq_0:
  \<open>bit a n \<longleftrightarrow> a AND push_bit n 1 \<noteq> 0\<close>
  apply (cases \<open>2 ^ n = 0\<close>)
  apply (simp_all add: push_bit_of_1 bit_eq_iff bit_and_iff bit_push_bit_iff exp_eq_0_imp_not_bit)
  apply (simp_all add: bit_exp_iff)
  done

lemmas set_bit_def = set_bit_eq_or

lemma bit_set_bit_iff [bit_simps]:
  \<open>bit (set_bit m a) n \<longleftrightarrow> bit a n \<or> (m = n \<and> 2 ^ n \<noteq> 0)\<close>
  by (auto simp add: set_bit_def push_bit_of_1 bit_or_iff bit_exp_iff)

lemma even_set_bit_iff:
  \<open>even (set_bit m a) \<longleftrightarrow> even a \<and> m \<noteq> 0\<close>
  using bit_set_bit_iff [of m a 0] by auto

lemma even_unset_bit_iff:
  \<open>even (unset_bit m a) \<longleftrightarrow> even a \<or> m = 0\<close>
  using bit_unset_bit_iff [of m a 0] by auto

lemma and_exp_eq_0_iff_not_bit:
  \<open>a AND 2 ^ n = 0 \<longleftrightarrow> \<not> bit a n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
proof
  assume ?Q
  then show ?P
    by (auto intro: bit_eqI simp add: bit_simps)
next
  assume ?P
  show ?Q
  proof (rule notI)
    assume \<open>bit a n\<close>
    then have \<open>a AND 2 ^ n = 2 ^ n\<close>
      by (auto intro: bit_eqI simp add: bit_simps)
    with \<open>?P\<close> show False
      using \<open>bit a n\<close> exp_eq_0_imp_not_bit by auto
  qed
qed

lemmas flip_bit_def = flip_bit_eq_xor

lemma bit_flip_bit_iff [bit_simps]:
  \<open>bit (flip_bit m a) n \<longleftrightarrow> (m = n \<longleftrightarrow> \<not> bit a n) \<and> 2 ^ n \<noteq> 0\<close>
  by (auto simp add: flip_bit_def push_bit_of_1 bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit)

lemma even_flip_bit_iff:
  \<open>even (flip_bit m a) \<longleftrightarrow> \<not> (even a \<longleftrightarrow> m = 0)\<close>
  using bit_flip_bit_iff [of m a 0] by auto

lemma set_bit_0 [simp]:
  \<open>set_bit 0 a = 1 + 2 * (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  then show \<open>bit (set_bit 0 a) m = bit (1 + 2 * (a div 2)) m\<close>
    by (simp add: bit_set_bit_iff bit_double_iff even_bit_succ_iff)
      (cases m, simp_all add: bit_Suc)
qed

lemma set_bit_Suc:
  \<open>set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  show \<open>bit (set_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * set_bit n (a div 2)) m\<close>
  proof (cases m)
    case 0
    then show ?thesis
      by (simp add: even_set_bit_iff)
  next
    case (Suc m)
    with * have \<open>2 ^ m \<noteq> 0\<close>
      using mult_2 by auto
    show ?thesis
      by (cases a rule: parity_cases)
        (simp_all add: bit_set_bit_iff bit_double_iff even_bit_succ_iff *,
        simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
  qed
qed

lemma unset_bit_0 [simp]:
  \<open>unset_bit 0 a = 2 * (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  then show \<open>bit (unset_bit 0 a) m = bit (2 * (a div 2)) m\<close>
    by (simp add: bit_unset_bit_iff bit_double_iff)
      (cases m, simp_all add: bit_Suc)
qed

lemma unset_bit_Suc:
  \<open>unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  then show \<open>bit (unset_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * unset_bit n (a div 2)) m\<close>
  proof (cases m)
    case 0
    then show ?thesis
      by (simp add: even_unset_bit_iff)
  next
    case (Suc m)
    show ?thesis
      by (cases a rule: parity_cases)
        (simp_all add: bit_unset_bit_iff bit_double_iff even_bit_succ_iff *,
         simp_all add: Suc bit_Suc)
  qed
qed

lemma flip_bit_0 [simp]:
  \<open>flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  then show \<open>bit (flip_bit 0 a) m = bit (of_bool (even a) + 2 * (a div 2)) m\<close>
    by (simp add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff)
      (cases m, simp_all add: bit_Suc)
qed

lemma flip_bit_Suc:
  \<open>flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  show \<open>bit (flip_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * flip_bit n (a div 2)) m\<close>
  proof (cases m)
    case 0
    then show ?thesis
      by (simp add: even_flip_bit_iff)
  next
    case (Suc m)
    with * have \<open>2 ^ m \<noteq> 0\<close>
      using mult_2 by auto
    show ?thesis
      by (cases a rule: parity_cases)
        (simp_all add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff,
        simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
  qed
qed

lemma flip_bit_eq_if:
  \<open>flip_bit n a = (if bit a n then unset_bit else set_bit) n a\<close>
  by (rule bit_eqI) (auto simp add: bit_set_bit_iff bit_unset_bit_iff bit_flip_bit_iff)

lemma take_bit_set_bit_eq:
  \<open>take_bit n (set_bit m a) = (if n \<le> m then take_bit n a else set_bit m (take_bit n a))\<close>
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff)

lemma take_bit_unset_bit_eq:
  \<open>take_bit n (unset_bit m a) = (if n \<le> m then take_bit n a else unset_bit m (take_bit n a))\<close>
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff)

lemma take_bit_flip_bit_eq:
  \<open>take_bit n (flip_bit m a) = (if n \<le> m then take_bit n a else flip_bit m (take_bit n a))\<close>
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff)


end

class ring_bit_operations = semiring_bit_operations + ring_parity +
  fixes not :: \<open>'a \<Rightarrow> 'a\<close>  (\<open>NOT\<close>)
  assumes bit_not_iff [bit_simps]: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
  assumes minus_eq_not_minus_1: \<open>- a = NOT (a - 1)\<close>
begin

text \<open>
  For the sake of code generation \<^const>\<open>not\<close> is specified as
  definitional class operation.  Note that \<^const>\<open>not\<close> has no
  sensible definition for unlimited but only positive bit strings
  (type \<^typ>\<open>nat\<close>).
\<close>

lemma bits_minus_1_mod_2_eq [simp]:
  \<open>(- 1) mod 2 = 1\<close>
  by (simp add: mod_2_eq_odd)

lemma not_eq_complement:
  \<open>NOT a = - a - 1\<close>
  using minus_eq_not_minus_1 [of \<open>a + 1\<close>] by simp

lemma minus_eq_not_plus_1:
  \<open>- a = NOT a + 1\<close>
  using not_eq_complement [of a] by simp

lemma bit_minus_iff [bit_simps]:
  \<open>bit (- a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit (a - 1) n\<close>
  by (simp add: minus_eq_not_minus_1 bit_not_iff)

lemma even_not_iff [simp]:
  \<open>even (NOT a) \<longleftrightarrow> odd a\<close>
  using bit_not_iff [of a 0] by auto

lemma bit_not_exp_iff [bit_simps]:
  \<open>bit (NOT (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<noteq> m\<close>
  by (auto simp add: bit_not_iff bit_exp_iff)

lemma bit_minus_1_iff [simp]:
  \<open>bit (- 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close>
  by (simp add: bit_minus_iff)

lemma bit_minus_exp_iff [bit_simps]:
  \<open>bit (- (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<ge> m\<close>
  by (auto simp add: bit_simps simp flip: mask_eq_exp_minus_1)

lemma bit_minus_2_iff [simp]:
  \<open>bit (- 2) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n > 0\<close>
  by (simp add: bit_minus_iff bit_1_iff)

lemma not_one [simp]:
  \<open>NOT 1 = - 2\<close>
  by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff)

sublocale "and": semilattice_neutr \<open>(AND)\<close> \<open>- 1\<close>
  by standard (rule bit_eqI, simp add: bit_and_iff)

sublocale bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
  rewrites \<open>bit.xor = (XOR)\<close>
proof -
  interpret bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
    by standard (auto simp add: bit_and_iff bit_or_iff bit_not_iff intro: bit_eqI)
  show \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close>
    by standard
  show \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close>
    by (rule ext, rule ext, rule bit_eqI)
      (auto simp add: bit.xor_def bit_and_iff bit_or_iff bit_xor_iff bit_not_iff)
qed

lemma and_eq_not_not_or:
  \<open>a AND b = NOT (NOT a OR NOT b)\<close>
  by simp

lemma or_eq_not_not_and:
  \<open>a OR b = NOT (NOT a AND NOT b)\<close>
  by simp

lemma not_add_distrib:
  \<open>NOT (a + b) = NOT a - b\<close>
  by (simp add: not_eq_complement algebra_simps)

lemma not_diff_distrib:
  \<open>NOT (a - b) = NOT a + b\<close>
  using not_add_distrib [of a \<open>- b\<close>] by simp

lemma (in ring_bit_operations) and_eq_minus_1_iff:
  \<open>a AND b = - 1 \<longleftrightarrow> a = - 1 \<and> b = - 1\<close>
proof
  assume \<open>a = - 1 \<and> b = - 1\<close>
  then show \<open>a AND b = - 1\<close>
    by simp
next
  assume \<open>a AND b = - 1\<close>
  have *: \<open>bit a n\<close> \<open>bit b n\<close> if \<open>2 ^ n \<noteq> 0\<close> for n
  proof -
    from \<open>a AND b = - 1\<close>
    have \<open>bit (a AND b) n = bit (- 1) n\<close>
      by (simp add: bit_eq_iff)
    then show \<open>bit a n\<close> \<open>bit b n\<close>
      using that by (simp_all add: bit_and_iff)
  qed
  have \<open>a = - 1\<close>
    by (rule bit_eqI) (simp add: *)
  moreover have \<open>b = - 1\<close>
    by (rule bit_eqI) (simp add: *)
  ultimately show \<open>a = - 1 \<and> b = - 1\<close>
    by simp
qed

lemma disjunctive_diff:
  \<open>a - b = a AND NOT b\<close> if \<open>\<And>n. bit b n \<Longrightarrow> bit a n\<close>
proof -
  have \<open>NOT a + b = NOT a OR b\<close>
    by (rule disjunctive_add) (auto simp add: bit_not_iff dest: that)
  then have \<open>NOT (NOT a + b) = NOT (NOT a OR b)\<close>
    by simp
  then show ?thesis
    by (simp add: not_add_distrib)
qed

lemma push_bit_minus:
  \<open>push_bit n (- a) = - push_bit n a\<close>
  by (simp add: push_bit_eq_mult)

lemma take_bit_not_take_bit:
  \<open>take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff)

lemma take_bit_not_iff:
  \<open>take_bit n (NOT a) = take_bit n (NOT b) \<longleftrightarrow> take_bit n a = take_bit n b\<close>
  apply (simp add: bit_eq_iff)
  apply (simp add: bit_not_iff bit_take_bit_iff bit_exp_iff)
  apply (use exp_eq_0_imp_not_bit in blast)
  done

lemma take_bit_not_eq_mask_diff:
  \<open>take_bit n (NOT a) = mask n - take_bit n a\<close>
proof -
  have \<open>take_bit n (NOT a) = take_bit n (NOT (take_bit n a))\<close>
    by (simp add: take_bit_not_take_bit)
  also have \<open>\<dots> = mask n AND NOT (take_bit n a)\<close>
    by (simp add: take_bit_eq_mask ac_simps)
  also have \<open>\<dots> = mask n - take_bit n a\<close>
    by (subst disjunctive_diff)
      (auto simp add: bit_take_bit_iff bit_mask_iff exp_eq_0_imp_not_bit)
  finally show ?thesis
    by simp
qed

lemma mask_eq_take_bit_minus_one:
  \<open>mask n = take_bit n (- 1)\<close>
  by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute)

lemma take_bit_minus_one_eq_mask:
  \<open>take_bit n (- 1) = mask n\<close>
  by (simp add: mask_eq_take_bit_minus_one)

lemma minus_exp_eq_not_mask:
  \<open>- (2 ^ n) = NOT (mask n)\<close>
  by (rule bit_eqI) (simp add: bit_minus_iff bit_not_iff flip: mask_eq_exp_minus_1)

lemma push_bit_minus_one_eq_not_mask:
  \<open>push_bit n (- 1) = NOT (mask n)\<close>
  by (simp add: push_bit_eq_mult minus_exp_eq_not_mask)

lemma take_bit_not_mask_eq_0:
  \<open>take_bit m (NOT (mask n)) = 0\<close> if \<open>n \<ge> m\<close>
  by (rule bit_eqI) (use that in \<open>simp add: bit_take_bit_iff bit_not_iff bit_mask_iff\<close>)

lemma unset_bit_eq_and_not:
  \<open>unset_bit n a = a AND NOT (push_bit n 1)\<close>
  by (rule bit_eqI) (auto simp add: bit_simps)

lemmas unset_bit_def = unset_bit_eq_and_not

end


subsection \<open>Instance \<^typ>\<open>int\<close>\<close>

lemma int_bit_bound:
  fixes k :: int
  obtains n where \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
    and \<open>n > 0 \<Longrightarrow> bit k (n - 1) \<noteq> bit k n\<close>
proof -
  obtain q where *: \<open>\<And>m. q \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k q\<close>
  proof (cases \<open>k \<ge> 0\<close>)
    case True
    moreover from power_gt_expt [of 2 \<open>nat k\<close>]
    have \<open>nat k < 2 ^ nat k\<close>
      by simp
    then have \<open>int (nat k) < int (2 ^ nat k)\<close>
      by (simp only: of_nat_less_iff)
    ultimately have *: \<open>k div 2 ^ nat k = 0\<close>
      by simp
    show thesis
    proof (rule that [of \<open>nat k\<close>])
      fix m
      assume \<open>nat k \<le> m\<close>
      then show \<open>bit k m \<longleftrightarrow> bit k (nat k)\<close>
        by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq dest!: le_Suc_ex)
    qed
  next
    case False
    moreover from power_gt_expt [of 2 \<open>nat (- k)\<close>]
    have \<open>nat (- k) < 2 ^ nat (- k)\<close>
      by simp
    then have \<open>int (nat (- k)) < int (2 ^ nat (- k))\<close>
      by (simp only: of_nat_less_iff)
    ultimately have \<open>- k div - (2 ^ nat (- k)) = - 1\<close>
      by (subst div_pos_neg_trivial) simp_all
    then have *: \<open>k div 2 ^ nat (- k) = - 1\<close>
      by simp
    show thesis
    proof (rule that [of \<open>nat (- k)\<close>])
      fix m
      assume \<open>nat (- k) \<le> m\<close>
      then show \<open>bit k m \<longleftrightarrow> bit k (nat (- k))\<close>
        by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq minus_1_div_exp_eq_int dest!: le_Suc_ex)
    qed
  qed
  show thesis
  proof (cases \<open>\<forall>m. bit k m \<longleftrightarrow> bit k q\<close>)
    case True
    then have \<open>bit k 0 \<longleftrightarrow> bit k q\<close>
      by blast
    with True that [of 0] show thesis
      by simp
  next
    case False
    then obtain r where **: \<open>bit k r \<noteq> bit k q\<close>
      by blast
    have \<open>r < q\<close>
      by (rule ccontr) (use * [of r] ** in simp)
    define N where \<open>N = {n. n < q \<and> bit k n \<noteq> bit k q}\<close>
    moreover have \<open>finite N\<close> \<open>r \<in> N\<close>
      using ** N_def \<open>r < q\<close> by auto
    moreover define n where \<open>n = Suc (Max N)\<close>
    ultimately have \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
      apply auto
         apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
        apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
        apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
      apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
      done
    have \<open>bit k (Max N) \<noteq> bit k n\<close>
      by (metis (mono_tags, lifting) "*" Max_in N_def \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> \<open>finite N\<close> \<open>r \<in> N\<close> empty_iff le_cases mem_Collect_eq)
    show thesis apply (rule that [of n])
      using \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> apply blast
      using \<open>bit k (Max N) \<noteq> bit k n\<close> n_def by auto
  qed
qed

instantiation int :: ring_bit_operations
begin

definition not_int :: \<open>int \<Rightarrow> int\<close>
  where \<open>not_int k = - k - 1\<close>

lemma not_int_rec:
  \<open>NOT k = of_bool (even k) + 2 * NOT (k div 2)\<close> for k :: int
  by (auto simp add: not_int_def elim: oddE)

lemma even_not_iff_int:
  \<open>even (NOT k) \<longleftrightarrow> odd k\<close> for k :: int
  by (simp add: not_int_def)

lemma not_int_div_2:
  \<open>NOT k div 2 = NOT (k div 2)\<close> for k :: int
  by (cases k) (simp_all add: not_int_def divide_int_def nat_add_distrib)

lemma bit_not_int_iff [bit_simps]:
  \<open>bit (NOT k) n \<longleftrightarrow> \<not> bit k n\<close>
  for k :: int
  by (simp add: bit_not_int_iff' not_int_def)

function and_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>(k::int) AND l = (if k \<in> {0, - 1} \<and> l \<in> {0, - 1}
    then - of_bool (odd k \<and> odd l)
    else of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2)))\<close>
  by auto

termination proof (relation \<open>measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))\<close>)
  show \<open>wf (measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>)))\<close>
    by simp
  show \<open>((k div 2, l div 2), k, l) \<in> measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))\<close>
    if \<open>\<not> (k \<in> {0, - 1} \<and> l \<in> {0, - 1})\<close> for k l
  proof -
    have less_eq: \<open>\<bar>k div 2\<bar> \<le> \<bar>k\<bar>\<close> for k :: int
      by (cases k) (simp_all add: divide_int_def nat_add_distrib)
    have less: \<open>\<bar>k div 2\<bar> < \<bar>k\<bar>\<close> if \<open>k \<notin> {0, - 1}\<close> for k :: int
    proof (cases k)
      case (nonneg n)
      with that show ?thesis
        by (simp add: int_div_less_self)
    next
      case (neg n)
      with that have \<open>n \<noteq> 0\<close>
        by simp
      then have \<open>n div 2 < n\<close>
        by (simp add: div_less_iff_less_mult)
      with neg that show ?thesis
        by (simp add: divide_int_def nat_add_distrib)
    qed
    from that have *: \<open>k \<notin> {0, - 1} \<or> l \<notin> {0, - 1}\<close>
      by simp
    then have \<open>0 < \<bar>k\<bar> + \<bar>l\<bar>\<close>
      by auto
    moreover from * have \<open>\<bar>k div 2\<bar> + \<bar>l div 2\<bar> < \<bar>k\<bar> + \<bar>l\<bar>\<close>
    proof
      assume \<open>k \<notin> {0, - 1}\<close>
      then have \<open>\<bar>k div 2\<bar> < \<bar>k\<bar>\<close>
        by (rule less)
      with less_eq [of l] show ?thesis
        by auto
    next
      assume \<open>l \<notin> {0, - 1}\<close>
      then have \<open>\<bar>l div 2\<bar> < \<bar>l\<bar>\<close>
        by (rule less)
      with less_eq [of k] show ?thesis
        by auto
    qed
    ultimately show ?thesis
      by simp
  qed
qed

declare and_int.simps [simp del]

lemma and_int_rec:
  \<open>k AND l = of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2))\<close>
    for k l :: int
proof (cases \<open>k \<in> {0, - 1} \<and> l \<in> {0, - 1}\<close>)
  case True
  then show ?thesis
    by auto (simp_all add: and_int.simps)
next
  case False
  then show ?thesis
    by (auto simp add: ac_simps and_int.simps [of k l])
qed

lemma bit_and_int_iff:
  \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close> for k l :: int
proof (induction n arbitrary: k l)
  case 0
  then show ?case
    by (simp add: and_int_rec [of k l])
next
  case (Suc n)
  then show ?case
    by (simp add: and_int_rec [of k l] bit_Suc)
qed

lemma even_and_iff_int:
  \<open>even (k AND l) \<longleftrightarrow> even k \<or> even l\<close> for k l :: int
  using bit_and_int_iff [of k l 0] by auto

definition or_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>k OR l = NOT (NOT k AND NOT l)\<close> for k l :: int

lemma or_int_rec:
  \<open>k OR l = of_bool (odd k \<or> odd l) + 2 * ((k div 2) OR (l div 2))\<close>
  for k l :: int
  using and_int_rec [of \<open>NOT k\<close> \<open>NOT l\<close>]
  by (simp add: or_int_def even_not_iff_int not_int_div_2)
    (simp_all add: not_int_def)

lemma bit_or_int_iff:
  \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close> for k l :: int
  by (simp add: or_int_def bit_not_int_iff bit_and_int_iff)

definition xor_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>k XOR l = k AND NOT l OR NOT k AND l\<close> for k l :: int

lemma xor_int_rec:
  \<open>k XOR l = of_bool (odd k \<noteq> odd l) + 2 * ((k div 2) XOR (l div 2))\<close>
  for k l :: int
  by (simp add: xor_int_def or_int_rec [of \<open>k AND NOT l\<close> \<open>NOT k AND l\<close>] even_and_iff_int even_not_iff_int)
    (simp add: and_int_rec [of \<open>NOT k\<close> \<open>l\<close>] and_int_rec [of \<open>k\<close> \<open>NOT l\<close>] not_int_div_2)

lemma bit_xor_int_iff:
  \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close> for k l :: int
  by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff)

definition mask_int :: \<open>nat \<Rightarrow> int\<close>
  where \<open>mask n = (2 :: int) ^ n - 1\<close>

definition set_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>set_bit n k = k OR push_bit n 1\<close> for k :: int

definition unset_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>unset_bit n k = k AND NOT (push_bit n 1)\<close> for k :: int

definition flip_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>flip_bit n k = k XOR push_bit n 1\<close> for k :: int

instance proof
  fix k l :: int and m n :: nat
  show \<open>- k = NOT (k - 1)\<close>
    by (simp add: not_int_def)
  show \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close>
    by (fact bit_and_int_iff)
  show \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close>
    by (fact bit_or_int_iff)
  show \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close>
    by (fact bit_xor_int_iff)
  show \<open>bit (unset_bit m k) n \<longleftrightarrow> bit k n \<and> m \<noteq> n\<close>
  proof -
    have \<open>unset_bit m k = k AND NOT (push_bit m 1)\<close>
      by (simp add: unset_bit_int_def)
    also have \<open>NOT (push_bit m 1 :: int) = - (push_bit m 1 + 1)\<close>
      by (simp add: not_int_def)
    finally show ?thesis by (simp only: bit_simps bit_and_int_iff) (auto simp add: bit_simps)
  qed
qed (simp_all add: bit_not_int_iff mask_int_def set_bit_int_def flip_bit_int_def)

end

lemma mask_half_int:
  \<open>mask n div 2 = (mask (n - 1) :: int)\<close>
  by (cases n) (simp_all add: mask_eq_exp_minus_1 algebra_simps)

lemma mask_nonnegative_int [simp]:
  \<open>mask n \<ge> (0::int)\<close>
  by (simp add: mask_eq_exp_minus_1)

lemma not_mask_negative_int [simp]:
  \<open>\<not> mask n < (0::int)\<close>
  by (simp add: not_less)

lemma not_nonnegative_int_iff [simp]:
  \<open>NOT k \<ge> 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (simp add: not_int_def)

lemma not_negative_int_iff [simp]:
  \<open>NOT k < 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le)

lemma and_nonnegative_int_iff [simp]:
  \<open>k AND l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<or> l \<ge> 0\<close> for k l :: int
proof (induction k arbitrary: l rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even k)
  then show ?case
    using and_int_rec [of \<open>k * 2\<close> l]
    by (simp add: pos_imp_zdiv_nonneg_iff zero_le_mult_iff)
next
  case (odd k)
  from odd have \<open>0 \<le> k AND l div 2 \<longleftrightarrow> 0 \<le> k \<or> 0 \<le> l div 2\<close>
    by simp
  then have \<open>0 \<le> (1 + k * 2) div 2 AND l div 2 \<longleftrightarrow> 0 \<le> (1 + k * 2) div 2 \<or> 0 \<le> l div 2\<close>
    by simp
  with and_int_rec [of \<open>1 + k * 2\<close> l]
  show ?case
    by (auto simp add: zero_le_mult_iff not_le)
qed

lemma and_negative_int_iff [simp]:
  \<open>k AND l < 0 \<longleftrightarrow> k < 0 \<and> l < 0\<close> for k l :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)

lemma and_less_eq:
  \<open>k AND l \<le> k\<close> if \<open>l < 0\<close> for k l :: int
using that proof (induction k arbitrary: l rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even k)
  from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
  show ?case
    by (simp add: and_int_rec [of _ l])
next
  case (odd k)
  from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
  show ?case
    by (simp add: and_int_rec [of _ l])
qed

lemma or_nonnegative_int_iff [simp]:
  \<open>k OR l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<and> l \<ge> 0\<close> for k l :: int
  by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp

lemma or_negative_int_iff [simp]:
  \<open>k OR l < 0 \<longleftrightarrow> k < 0 \<or> l < 0\<close> for k l :: int
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)

lemma or_greater_eq:
  \<open>k OR l \<ge> k\<close> if \<open>l \<ge> 0\<close> for k l :: int
using that proof (induction k arbitrary: l rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even k)
  from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
  show ?case
    by (simp add: or_int_rec [of _ l])
next
  case (odd k)
  from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
  show ?case
    by (simp add: or_int_rec [of _ l])
qed

lemma xor_nonnegative_int_iff [simp]:
  \<open>k XOR l \<ge> 0 \<longleftrightarrow> (k \<ge> 0 \<longleftrightarrow> l \<ge> 0)\<close> for k l :: int
  by (simp only: bit.xor_def or_nonnegative_int_iff) auto

lemma xor_negative_int_iff [simp]:
  \<open>k XOR l < 0 \<longleftrightarrow> (k < 0) \<noteq> (l < 0)\<close> for k l :: int
  by (subst Not_eq_iff [symmetric]) (auto simp add: not_less)

lemma OR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close> \<open>x < 2 ^ n\<close> \<open>y < 2 ^ n\<close>
  shows \<open>x OR y < 2 ^ n\<close>
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even x)
  from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
  show ?case 
    by (cases n) (auto simp add: or_int_rec [of \<open>_ * 2\<close>] elim: oddE)
next
  case (odd x)
  from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
  show ?case
    by (cases n) (auto simp add: or_int_rec [of \<open>1 + _ * 2\<close>], linarith)
qed

lemma XOR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close> \<open>x < 2 ^ n\<close> \<open>y < 2 ^ n\<close>
  shows \<open>x XOR y < 2 ^ n\<close>
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even x)
  from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
  show ?case 
    by (cases n) (auto simp add: xor_int_rec [of \<open>_ * 2\<close>] elim: oddE)
next
  case (odd x)
  from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
  show ?case
    by (cases n) (auto simp add: xor_int_rec [of \<open>1 + _ * 2\<close>])
qed

lemma AND_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close>
  shows \<open>0 \<le> x AND y\<close>
  using assms by simp

lemma OR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
  shows \<open>0 \<le> x OR y\<close>
  using assms by simp

lemma XOR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
  shows \<open>0 \<le> x XOR y\<close>
  using assms by simp

lemma AND_upper1 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> x\<close>
  shows \<open>x AND y \<le> x\<close>
using assms proof (induction x arbitrary: y rule: int_bit_induct)
  case (odd k)
  then have \<open>k AND y div 2 \<le> k\<close>
    by simp
  then show ?case 
    by (simp add: and_int_rec [of \<open>1 + _ * 2\<close>])
qed (simp_all add: and_int_rec [of \<open>_ * 2\<close>])

lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>

lemma AND_upper2 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
  fixes x y :: int
  assumes \<open>0 \<le> y\<close>
  shows \<open>x AND y \<le> y\<close>
  using assms AND_upper1 [of y x] by (simp add: ac_simps)

lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>

lemma plus_and_or: \<open>(x AND y) + (x OR y) = x + y\<close> for x y :: int
proof (induction x arbitrary: y rule: int_bit_induct)
  case zero
  then show ?case
    by simp
next
  case minus
  then show ?case
    by simp
next
  case (even x)
  from even.IH [of \<open>y div 2\<close>]
  show ?case
    by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
next
  case (odd x)
  from odd.IH [of \<open>y div 2\<close>]
  show ?case
    by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
qed

lemma set_bit_nonnegative_int_iff [simp]:
  \<open>set_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (simp add: set_bit_def)

lemma set_bit_negative_int_iff [simp]:
  \<open>set_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (simp add: set_bit_def)

lemma unset_bit_nonnegative_int_iff [simp]:
  \<open>unset_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (simp add: unset_bit_def)

lemma unset_bit_negative_int_iff [simp]:
  \<open>unset_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (simp add: unset_bit_def)

lemma flip_bit_nonnegative_int_iff [simp]:
  \<open>flip_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
  by (simp add: flip_bit_def)

lemma flip_bit_negative_int_iff [simp]:
  \<open>flip_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
  by (simp add: flip_bit_def)

lemma set_bit_greater_eq:
  \<open>set_bit n k \<ge> k\<close> for k :: int
  by (simp add: set_bit_def or_greater_eq)

lemma unset_bit_less_eq:
  \<open>unset_bit n k \<le> k\<close> for k :: int
  by (simp add: unset_bit_def and_less_eq)

lemma set_bit_eq:
  \<open>set_bit n k = k + of_bool (\<not> bit k n) * 2 ^ n\<close> for k :: int
proof (rule bit_eqI)
  fix m
  show \<open>bit (set_bit n k) m \<longleftrightarrow> bit (k + of_bool (\<not> bit k n) * 2 ^ n) m\<close>
  proof (cases \<open>m = n\<close>)
    case True
    then show ?thesis
      apply (simp add: bit_set_bit_iff)
      apply (simp add: bit_iff_odd div_plus_div_distrib_dvd_right)
      done
  next
    case False
    then show ?thesis
      apply (clarsimp simp add: bit_set_bit_iff)
      apply (subst disjunctive_add)
      apply (clarsimp simp add: bit_exp_iff)
      apply (clarsimp simp add: bit_or_iff bit_exp_iff)
      done
  qed
qed

lemma unset_bit_eq:
  \<open>unset_bit n k = k - of_bool (bit k n) * 2 ^ n\<close> for k :: int
proof (rule bit_eqI)
  fix m
  show \<open>bit (unset_bit n k) m \<longleftrightarrow> bit (k - of_bool (bit k n) * 2 ^ n) m\<close>
  proof (cases \<open>m = n\<close>)
    case True
    then show ?thesis
      apply (simp add: bit_unset_bit_iff)
      apply (simp add: bit_iff_odd)
      using div_plus_div_distrib_dvd_right [of \<open>2 ^ n\<close> \<open>- (2 ^ n)\<close> k]
      apply (simp add: dvd_neg_div)
      done
  next
    case False
    then show ?thesis
      apply (clarsimp simp add: bit_unset_bit_iff)
      apply (subst disjunctive_diff)
      apply (clarsimp simp add: bit_exp_iff)
      apply (clarsimp simp add: bit_and_iff bit_not_iff bit_exp_iff)
      done
  qed
qed

lemma take_bit_eq_mask_iff:
  \<open>take_bit n k = mask n \<longleftrightarrow> take_bit n (k + 1) = 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  for k :: int
proof
  assume ?P
  then have \<open>take_bit n (take_bit n k + take_bit n 1) = 0\<close>
    by (simp add: mask_eq_exp_minus_1)
  then show ?Q
    by (simp only: take_bit_add)
next
  assume ?Q
  then have \<open>take_bit n (k + 1) - 1 = - 1\<close>
    by simp
  then have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n (- 1)\<close>
    by simp
  moreover have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n k\<close>
    by (simp add: take_bit_eq_mod mod_simps)
  ultimately show ?P
    by (simp add: take_bit_minus_one_eq_mask)
qed

lemma take_bit_eq_mask_iff_exp_dvd:
  \<open>take_bit n k = mask n \<longleftrightarrow> 2 ^ n dvd k + 1\<close>
  for k :: int
  by (simp add: take_bit_eq_mask_iff flip: take_bit_eq_0_iff)

context ring_bit_operations
begin

lemma even_of_int_iff:
  \<open>even (of_int k) \<longleftrightarrow> even k\<close>
  by (induction k rule: int_bit_induct) simp_all

lemma bit_of_int_iff [bit_simps]:
  \<open>bit (of_int k) n \<longleftrightarrow> (2::'a) ^ n \<noteq> 0 \<and> bit k n\<close>
proof (cases \<open>(2::'a) ^ n = 0\<close>)
  case True
  then show ?thesis
    by (simp add: exp_eq_0_imp_not_bit)
next
  case False
  then have \<open>bit (of_int k) n \<longleftrightarrow> bit k n\<close>
  proof (induction k arbitrary: n rule: int_bit_induct)
    case zero
    then show ?case
      by simp
  next
    case minus
    then show ?case
      by simp
  next
    case (even k)
    then show ?case
      using bit_double_iff [of \<open>of_int k\<close> n] Bit_Operations.bit_double_iff [of k n]
      by (cases n) (auto simp add: ac_simps dest: mult_not_zero)
  next
    case (odd k)
    then show ?case
      using bit_double_iff [of \<open>of_int k\<close> n]
      by (cases n) (auto simp add: ac_simps bit_double_iff even_bit_succ_iff Bit_Operations.bit_Suc dest: mult_not_zero)
  qed
  with False show ?thesis
    by simp
qed

lemma push_bit_of_int:
  \<open>push_bit n (of_int k) = of_int (push_bit n k)\<close>
  by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)

lemma of_int_push_bit:
  \<open>of_int (push_bit n k) = push_bit n (of_int k)\<close>
  by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)

lemma take_bit_of_int:
  \<open>take_bit n (of_int k) = of_int (take_bit n k)\<close>
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff)

lemma of_int_take_bit:
  \<open>of_int (take_bit n k) = take_bit n (of_int k)\<close>
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff)

lemma of_int_not_eq:
  \<open>of_int (NOT k) = NOT (of_int k)\<close>
  by (rule bit_eqI) (simp add: bit_not_iff Bit_Operations.bit_not_iff bit_of_int_iff)

lemma of_int_and_eq:
  \<open>of_int (k AND l) = of_int k AND of_int l\<close>
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_and_iff Bit_Operations.bit_and_iff)

lemma of_int_or_eq:
  \<open>of_int (k OR l) = of_int k OR of_int l\<close>
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_or_iff Bit_Operations.bit_or_iff)

lemma of_int_xor_eq:
  \<open>of_int (k XOR l) = of_int k XOR of_int l\<close>
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_xor_iff Bit_Operations.bit_xor_iff)

lemma of_int_mask_eq:
  \<open>of_int (mask n) = mask n\<close>
  by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_int_or_eq)

end

lemma take_bit_incr_eq:
  \<open>take_bit n (k + 1) = 1 + take_bit n k\<close> if \<open>take_bit n k \<noteq> 2 ^ n - 1\<close>
  for k :: int
proof -
  from that have \<open>2 ^ n \<noteq> k mod 2 ^ n + 1\<close>
    by (simp add: take_bit_eq_mod)
  moreover have \<open>k mod 2 ^ n < 2 ^ n\<close>
    by simp
  ultimately have *: \<open>k mod 2 ^ n + 1 < 2 ^ n\<close>
    by linarith
  have \<open>(k + 1) mod 2 ^ n = (k mod 2 ^ n + 1) mod 2 ^ n\<close>
    by (simp add: mod_simps)
  also have \<open>\<dots> = k mod 2 ^ n + 1\<close>
    using * by (simp add: zmod_trivial_iff)
  finally have \<open>(k + 1) mod 2 ^ n = k mod 2 ^ n + 1\<close> .
  then show ?thesis
    by (simp add: take_bit_eq_mod)
qed

lemma take_bit_decr_eq:
  \<open>take_bit n (k - 1) = take_bit n k - 1\<close> if \<open>take_bit n k \<noteq> 0\<close>
  for k :: int
proof -
  from that have \<open>k mod 2 ^ n \<noteq> 0\<close>
    by (simp add: take_bit_eq_mod)
  moreover have \<open>k mod 2 ^ n \<ge> 0\<close> \<open>k mod 2 ^ n < 2 ^ n\<close>
    by simp_all
  ultimately have *: \<open>k mod 2 ^ n > 0\<close>
    by linarith
  have \<open>(k - 1) mod 2 ^ n = (k mod 2 ^ n - 1) mod 2 ^ n\<close>
    by (simp add: mod_simps)
  also have \<open>\<dots> = k mod 2 ^ n - 1\<close>
    by (simp add: zmod_trivial_iff)
      (use \<open>k mod 2 ^ n < 2 ^ n\<close> * in linarith)
  finally have \<open>(k - 1) mod 2 ^ n = k mod 2 ^ n - 1\<close> .
  then show ?thesis
    by (simp add: take_bit_eq_mod)
qed

lemma take_bit_int_greater_eq:
  \<open>k + 2 ^ n \<le> take_bit n k\<close> if \<open>k < 0\<close> for k :: int
proof -
  have \<open>k + 2 ^ n \<le> take_bit n (k + 2 ^ n)\<close>
  proof (cases \<open>k > - (2 ^ n)\<close>)
    case False
    then have \<open>k + 2 ^ n \<le> 0\<close>
      by simp
    also note take_bit_nonnegative
    finally show ?thesis .
  next
    case True
    with that have \<open>0 \<le> k + 2 ^ n\<close> and \<open>k + 2 ^ n < 2 ^ n\<close>
      by simp_all
    then show ?thesis
      by (simp only: take_bit_eq_mod mod_pos_pos_trivial)
  qed
  then show ?thesis
    by (simp add: take_bit_eq_mod)
qed

lemma take_bit_int_less_eq:
  \<open>take_bit n k \<le> k - 2 ^ n\<close> if \<open>2 ^ n \<le> k\<close> and \<open>n > 0\<close> for k :: int
  using that zmod_le_nonneg_dividend [of \<open>k - 2 ^ n\<close> \<open>2 ^ n\<close>]
  by (simp add: take_bit_eq_mod)

lemma take_bit_int_less_eq_self_iff:
  \<open>take_bit n k \<le> k \<longleftrightarrow> 0 \<le> k\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  for k :: int
proof
  assume ?P
  show ?Q
  proof (rule ccontr)
    assume \<open>\<not> 0 \<le> k\<close>
    then have \<open>k < 0\<close>
      by simp
    with \<open>?P\<close>
    have \<open>take_bit n k < 0\<close>
      by (rule le_less_trans)
    then show False
      by simp
  qed
next
  assume ?Q
  then show ?P
    by (simp add: take_bit_eq_mod zmod_le_nonneg_dividend)
qed

lemma take_bit_int_less_self_iff:
  \<open>take_bit n k < k \<longleftrightarrow> 2 ^ n \<le> k\<close>
  for k :: int
  by (auto simp add: less_le take_bit_int_less_eq_self_iff take_bit_int_eq_self_iff
    intro: order_trans [of 0 \<open>2 ^ n\<close> k])

lemma take_bit_int_greater_self_iff:
  \<open>k < take_bit n k \<longleftrightarrow> k < 0\<close>
  for k :: int
  using take_bit_int_less_eq_self_iff [of n k] by auto

lemma take_bit_int_greater_eq_self_iff:
  \<open>k \<le> take_bit n k \<longleftrightarrow> k < 2 ^ n\<close>
  for k :: int
  by (auto simp add: le_less take_bit_int_greater_self_iff take_bit_int_eq_self_iff
    dest: sym not_sym intro: less_trans [of k 0 \<open>2 ^ n\<close>])

lemma minus_numeral_inc_eq:
  \<open>- numeral (Num.inc n) = NOT (numeral n :: int)\<close>
  by (simp add: not_int_def sub_inc_One_eq add_One)

lemma sub_one_eq_not_neg:
  \<open>Num.sub n num.One = NOT (- numeral n :: int)\<close>
  by (simp add: not_int_def)

lemma int_not_numerals [simp]:
  \<open>NOT (numeral (Num.Bit0 n) :: int) = - numeral (Num.Bit1 n)\<close>
  \<open>NOT (numeral (Num.Bit1 n) :: int) = - numeral (Num.inc (num.Bit1 n))\<close>
  \<open>NOT (numeral (Num.BitM n) :: int) = - numeral (num.Bit0 n)\<close>
  \<open>NOT (- numeral (Num.Bit0 n) :: int) = numeral (Num.BitM n)\<close>
  \<open>NOT (- numeral (Num.Bit1 n) :: int) = numeral (Num.Bit0 n)\<close>
  by (simp_all add: not_int_def add_One inc_BitM_eq) 

text \<open>FIXME: The rule sets below are very large (24 rules for each
  operator). Is there a simpler way to do this?\<close>

context
begin

private lemma eqI:
  \<open>k = l\<close>
  if num: \<open>\<And>n. bit k (numeral n) \<longleftrightarrow> bit l (numeral n)\<close>
    and even: \<open>even k \<longleftrightarrow> even l\<close>
  for k l :: int
proof (rule bit_eqI)
  fix n
  show \<open>bit k n \<longleftrightarrow> bit l n\<close>
  proof (cases n)
    case 0
    with even show ?thesis
      by simp
  next
    case (Suc n)
    with num [of \<open>num_of_nat (Suc n)\<close>] show ?thesis
      by (simp only: numeral_num_of_nat)
  qed
qed

lemma int_and_numerals [simp]:
  \<open>numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)\<close>
  \<open>numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND numeral y)\<close>
  \<open>numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)\<close>
  \<open>numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND numeral y)\<close>
  \<open>numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)\<close>
  \<open>numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND - numeral (y + Num.One))\<close>
  \<open>numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)\<close>
  \<open>numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND - numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND - numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND - numeral (y + Num.One))\<close>
  \<open>(1::int) AND numeral (Num.Bit0 y) = 0\<close>
  \<open>(1::int) AND numeral (Num.Bit1 y) = 1\<close>
  \<open>(1::int) AND - numeral (Num.Bit0 y) = 0\<close>
  \<open>(1::int) AND - numeral (Num.Bit1 y) = 1\<close>
  \<open>numeral (Num.Bit0 x) AND (1::int) = 0\<close>
  \<open>numeral (Num.Bit1 x) AND (1::int) = 1\<close>
  \<open>- numeral (Num.Bit0 x) AND (1::int) = 0\<close>
  \<open>- numeral (Num.Bit1 x) AND (1::int) = 1\<close>
  by (auto simp add: bit_and_iff bit_minus_iff even_and_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq intro: eqI)

lemma int_or_numerals [simp]:
  \<open>numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR numeral y)\<close>
  \<open>numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)\<close>
  \<open>numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR numeral y)\<close>
  \<open>numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)\<close>
  \<open>numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR - numeral y)\<close>
  \<open>numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))\<close>
  \<open>numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR - numeral y)\<close>
  \<open>numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR - numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral (y + Num.One))\<close>
  \<open>(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\<close>
  \<open>(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)\<close>
  \<open>(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)\<close>
  \<open>(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)\<close>
  \<open>numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)\<close>
  \<open>numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)\<close>
  \<open>- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)\<close>
  \<open>- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)\<close>
  by (auto simp add: bit_or_iff bit_minus_iff even_or_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI)

lemma int_xor_numerals [simp]:
  \<open>numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR numeral y)\<close>
  \<open>numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR numeral y)\<close>
  \<open>numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR numeral y)\<close>
  \<open>numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR numeral y)\<close>
  \<open>numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR - numeral y)\<close>
  \<open>numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR - numeral (y + Num.One))\<close>
  \<open>numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR - numeral y)\<close>
  \<open>numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR - numeral y)\<close>
  \<open>- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR - numeral (y + Num.One))\<close>
  \<open>- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR - numeral y)\<close>
  \<open>- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR - numeral (y + Num.One))\<close>
  \<open>(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\<close>
  \<open>(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)\<close>
  \<open>(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)\<close>
  \<open>(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))\<close>
  \<open>numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)\<close>
  \<open>numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)\<close>
  \<open>- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)\<close>
  \<open>- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))\<close>
  by (auto simp add: bit_xor_iff bit_minus_iff even_xor_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI)

end


subsection \<open>Bit concatenation\<close>

definition concat_bit :: \<open>nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int\<close>
  where \<open>concat_bit n k l = take_bit n k OR push_bit n l\<close>

lemma bit_concat_bit_iff [bit_simps]:
  \<open>bit (concat_bit m k l) n \<longleftrightarrow> n < m \<and> bit k n \<or> m \<le> n \<and> bit l (n - m)\<close>
  by (simp add: concat_bit_def bit_or_iff bit_and_iff bit_take_bit_iff bit_push_bit_iff ac_simps)

lemma concat_bit_eq:
  \<open>concat_bit n k l = take_bit n k + push_bit n l\<close>
  by (simp add: concat_bit_def take_bit_eq_mask
    bit_and_iff bit_mask_iff bit_push_bit_iff disjunctive_add)

lemma concat_bit_0 [simp]:
  \<open>concat_bit 0 k l = l\<close>
  by (simp add: concat_bit_def)

lemma concat_bit_Suc:
  \<open>concat_bit (Suc n) k l = k mod 2 + 2 * concat_bit n (k div 2) l\<close>
  by (simp add: concat_bit_eq take_bit_Suc push_bit_double)

lemma concat_bit_of_zero_1 [simp]:
  \<open>concat_bit n 0 l = push_bit n l\<close>
  by (simp add: concat_bit_def)

lemma concat_bit_of_zero_2 [simp]:
  \<open>concat_bit n k 0 = take_bit n k\<close>
  by (simp add: concat_bit_def take_bit_eq_mask)

lemma concat_bit_nonnegative_iff [simp]:
  \<open>concat_bit n k l \<ge> 0 \<longleftrightarrow> l \<ge> 0\<close>
  by (simp add: concat_bit_def)

lemma concat_bit_negative_iff [simp]:
  \<open>concat_bit n k l < 0 \<longleftrightarrow> l < 0\<close>
  by (simp add: concat_bit_def)

lemma concat_bit_assoc:
  \<open>concat_bit n k (concat_bit m l r) = concat_bit (m + n) (concat_bit n k l) r\<close>
  by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps)

lemma concat_bit_assoc_sym:
  \<open>concat_bit m (concat_bit n k l) r = concat_bit (min m n) k (concat_bit (m - n) l r)\<close>
  by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps min_def)

lemma concat_bit_eq_iff:
  \<open>concat_bit n k l = concat_bit n r s
    \<longleftrightarrow> take_bit n k = take_bit n r \<and> l = s\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
proof
  assume ?Q
  then show ?P
    by (simp add: concat_bit_def)
next
  assume ?P
  then have *: \<open>bit (concat_bit n k l) m = bit (concat_bit n r s) m\<close> for m
    by (simp add: bit_eq_iff)
  have \<open>take_bit n k = take_bit n r\<close>
  proof (rule bit_eqI)
    fix m
    from * [of m]
    show \<open>bit (take_bit n k) m \<longleftrightarrow> bit (take_bit n r) m\<close>
      by (auto simp add: bit_take_bit_iff bit_concat_bit_iff)
  qed
  moreover have \<open>push_bit n l = push_bit n s\<close>
  proof (rule bit_eqI)
    fix m
    from * [of m]
    show \<open>bit (push_bit n l) m \<longleftrightarrow> bit (push_bit n s) m\<close>
      by (auto simp add: bit_push_bit_iff bit_concat_bit_iff)
  qed
  then have \<open>l = s\<close>
    by (simp add: push_bit_eq_mult)
  ultimately show ?Q
    by (simp add: concat_bit_def)
qed

lemma take_bit_concat_bit_eq:
  \<open>take_bit m (concat_bit n k l) = concat_bit (min m n) k (take_bit (m - n) l)\<close>
  by (rule bit_eqI)
    (auto simp add: bit_take_bit_iff bit_concat_bit_iff min_def)  

lemma concat_bit_take_bit_eq:
  \<open>concat_bit n (take_bit n b) = concat_bit n b\<close>
  by (simp add: concat_bit_def [abs_def])


subsection \<open>Taking bits with sign propagation\<close>

context ring_bit_operations
begin

definition signed_take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  where \<open>signed_take_bit n a = take_bit n a OR (of_bool (bit a n) * NOT (mask n))\<close>

lemma signed_take_bit_eq_if_positive:
  \<open>signed_take_bit n a = take_bit n a\<close> if \<open>\<not> bit a n\<close>
  using that by (simp add: signed_take_bit_def)

lemma signed_take_bit_eq_if_negative:
  \<open>signed_take_bit n a = take_bit n a OR NOT (mask n)\<close> if \<open>bit a n\<close>
  using that by (simp add: signed_take_bit_def)

lemma even_signed_take_bit_iff:
  \<open>even (signed_take_bit m a) \<longleftrightarrow> even a\<close>
  by (auto simp add: signed_take_bit_def even_or_iff even_mask_iff bit_double_iff)

lemma bit_signed_take_bit_iff [bit_simps]:
  \<open>bit (signed_take_bit m a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> bit a (min m n)\<close>
  by (simp add: signed_take_bit_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff min_def not_le)
    (use exp_eq_0_imp_not_bit in blast)

lemma signed_take_bit_0 [simp]:
  \<open>signed_take_bit 0 a = - (a mod 2)\<close>
  by (simp add: signed_take_bit_def odd_iff_mod_2_eq_one)

lemma signed_take_bit_Suc:
  \<open>signed_take_bit (Suc n) a = a mod 2 + 2 * signed_take_bit n (a div 2)\<close>
proof (rule bit_eqI)
  fix m
  assume *: \<open>2 ^ m \<noteq> 0\<close>
  show \<open>bit (signed_take_bit (Suc n) a) m \<longleftrightarrow>
    bit (a mod 2 + 2 * signed_take_bit n (a div 2)) m\<close>
  proof (cases m)
    case 0
    then show ?thesis
      by (simp add: even_signed_take_bit_iff)
  next
    case (Suc m)
    with * have \<open>2 ^ m \<noteq> 0\<close>
      by (metis mult_not_zero power_Suc)
    with Suc show ?thesis
      by (simp add: bit_signed_take_bit_iff mod2_eq_if bit_double_iff even_bit_succ_iff
        ac_simps flip: bit_Suc)
  qed
qed

lemma signed_take_bit_of_0 [simp]:
  \<open>signed_take_bit n 0 = 0\<close>
  by (simp add: signed_take_bit_def)

lemma signed_take_bit_of_minus_1 [simp]:
  \<open>signed_take_bit n (- 1) = - 1\<close>
  by (simp add: signed_take_bit_def take_bit_minus_one_eq_mask mask_eq_exp_minus_1)

lemma signed_take_bit_Suc_1 [simp]:
  \<open>signed_take_bit (Suc n) 1 = 1\<close>
  by (simp add: signed_take_bit_Suc)

lemma signed_take_bit_rec:
  \<open>signed_take_bit n a = (if n = 0 then - (a mod 2) else a mod 2 + 2 * signed_take_bit (n - 1) (a div 2))\<close>
  by (cases n) (simp_all add: signed_take_bit_Suc)

lemma signed_take_bit_eq_iff_take_bit_eq:
  \<open>signed_take_bit n a = signed_take_bit n b \<longleftrightarrow> take_bit (Suc n) a = take_bit (Suc n) b\<close>
proof -
  have \<open>bit (signed_take_bit n a) = bit (signed_take_bit n b) \<longleftrightarrow> bit (take_bit (Suc n) a) = bit (take_bit (Suc n) b)\<close>
    by (simp add: fun_eq_iff bit_signed_take_bit_iff bit_take_bit_iff not_le less_Suc_eq_le min_def)
      (use exp_eq_0_imp_not_bit in fastforce)
  then show ?thesis
    by (simp add: bit_eq_iff fun_eq_iff)
qed

lemma signed_take_bit_signed_take_bit [simp]:
  \<open>signed_take_bit m (signed_take_bit n a) = signed_take_bit (min m n) a\<close>
proof (rule bit_eqI)
  fix q
  show \<open>bit (signed_take_bit m (signed_take_bit n a)) q \<longleftrightarrow>
    bit (signed_take_bit (min m n) a) q\<close>
    by (simp add: bit_signed_take_bit_iff min_def bit_or_iff bit_not_iff bit_mask_iff bit_take_bit_iff)
      (use le_Suc_ex exp_add_not_zero_imp in blast)
qed

lemma signed_take_bit_take_bit:
  \<open>signed_take_bit m (take_bit n a) = (if n \<le> m then take_bit n else signed_take_bit m) a\<close>
  by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff)

lemma take_bit_signed_take_bit:
  \<open>take_bit m (signed_take_bit n a) = take_bit m a\<close> if \<open>m \<le> Suc n\<close>
  using that by (rule le_SucE; intro bit_eqI)
   (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def less_Suc_eq)

end

text \<open>Modulus centered around 0\<close>

lemma signed_take_bit_eq_concat_bit:
  \<open>signed_take_bit n k = concat_bit n k (- of_bool (bit k n))\<close>
  by (simp add: concat_bit_def signed_take_bit_def push_bit_minus_one_eq_not_mask)

lemma signed_take_bit_add:
  \<open>signed_take_bit n (signed_take_bit n k + signed_take_bit n l) = signed_take_bit n (k + l)\<close>
  for k l :: int
proof -
  have \<open>take_bit (Suc n)
     (take_bit (Suc n) (signed_take_bit n k) +
      take_bit (Suc n) (signed_take_bit n l)) =
    take_bit (Suc n) (k + l)\<close>
    by (simp add: take_bit_signed_take_bit take_bit_add)
  then show ?thesis
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_add)
qed

lemma signed_take_bit_diff:
  \<open>signed_take_bit n (signed_take_bit n k - signed_take_bit n l) = signed_take_bit n (k - l)\<close>
  for k l :: int
proof -
  have \<open>take_bit (Suc n)
     (take_bit (Suc n) (signed_take_bit n k) -
      take_bit (Suc n) (signed_take_bit n l)) =
    take_bit (Suc n) (k - l)\<close>
    by (simp add: take_bit_signed_take_bit take_bit_diff)
  then show ?thesis
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_diff)
qed

lemma signed_take_bit_minus:
  \<open>signed_take_bit n (- signed_take_bit n k) = signed_take_bit n (- k)\<close>
  for k :: int
proof -
  have \<open>take_bit (Suc n)
     (- take_bit (Suc n) (signed_take_bit n k)) =
    take_bit (Suc n) (- k)\<close>
    by (simp add: take_bit_signed_take_bit take_bit_minus)
  then show ?thesis
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_minus)
qed

lemma signed_take_bit_mult:
  \<open>signed_take_bit n (signed_take_bit n k * signed_take_bit n l) = signed_take_bit n (k * l)\<close>
  for k l :: int
proof -
  have \<open>take_bit (Suc n)
     (take_bit (Suc n) (signed_take_bit n k) *
      take_bit (Suc n) (signed_take_bit n l)) =
    take_bit (Suc n) (k * l)\<close>
    by (simp add: take_bit_signed_take_bit take_bit_mult)
  then show ?thesis
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_mult)
qed

lemma signed_take_bit_eq_take_bit_minus:
  \<open>signed_take_bit n k = take_bit (Suc n) k - 2 ^ Suc n * of_bool (bit k n)\<close>
  for k :: int
proof (cases \<open>bit k n\<close>)
  case True
  have \<open>signed_take_bit n k = take_bit (Suc n) k OR NOT (mask (Suc n))\<close>
    by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff less_Suc_eq True)
  then have \<open>signed_take_bit n k = take_bit (Suc n) k + NOT (mask (Suc n))\<close>
    by (simp add: disjunctive_add bit_take_bit_iff bit_not_iff bit_mask_iff)
  with True show ?thesis
    by (simp flip: minus_exp_eq_not_mask)
next
  case False
  show ?thesis
    by (rule bit_eqI) (simp add: False bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq)
qed

lemma signed_take_bit_eq_take_bit_shift:
  \<open>signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\<close>
  for k :: int
proof -
  have *: \<open>take_bit n k OR 2 ^ n = take_bit n k + 2 ^ n\<close>
    by (simp add: disjunctive_add bit_exp_iff bit_take_bit_iff)
  have \<open>take_bit n k - 2 ^ n = take_bit n k + NOT (mask n)\<close>
    by (simp add: minus_exp_eq_not_mask)
  also have \<open>\<dots> = take_bit n k OR NOT (mask n)\<close>
    by (rule disjunctive_add)
      (simp add: bit_exp_iff bit_take_bit_iff bit_not_iff bit_mask_iff)
  finally have **: \<open>take_bit n k - 2 ^ n = take_bit n k OR NOT (mask n)\<close> .
  have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (take_bit (Suc n) k + take_bit (Suc n) (2 ^ n))\<close>
    by (simp only: take_bit_add)
  also have \<open>take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\<close>
    by (simp add: take_bit_Suc_from_most)
  finally have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (2 ^ (n + of_bool (bit k n)) + take_bit n k)\<close>
    by (simp add: ac_simps)
  also have \<open>2 ^ (n + of_bool (bit k n)) + take_bit n k = 2 ^ (n + of_bool (bit k n)) OR take_bit n k\<close>
    by (rule disjunctive_add)
      (auto simp add: disjunctive_add bit_take_bit_iff bit_double_iff bit_exp_iff)
  finally show ?thesis
    using * ** by (simp add: signed_take_bit_def concat_bit_Suc min_def ac_simps)
qed

lemma signed_take_bit_nonnegative_iff [simp]:
  \<open>0 \<le> signed_take_bit n k \<longleftrightarrow> \<not> bit k n\<close>
  for k :: int
  by (simp add: signed_take_bit_def not_less concat_bit_def)

lemma signed_take_bit_negative_iff [simp]:
  \<open>signed_take_bit n k < 0 \<longleftrightarrow> bit k n\<close>
  for k :: int
  by (simp add: signed_take_bit_def not_less concat_bit_def)

lemma signed_take_bit_int_greater_eq_minus_exp [simp]:
  \<open>- (2 ^ n) \<le> signed_take_bit n k\<close>
  for k :: int
  by (simp add: signed_take_bit_eq_take_bit_shift)

lemma signed_take_bit_int_less_exp [simp]:
  \<open>signed_take_bit n k < 2 ^ n\<close>
  for k :: int
  using take_bit_int_less_exp [of \<open>Suc n\<close>]
  by (simp add: signed_take_bit_eq_take_bit_shift)

lemma signed_take_bit_int_eq_self_iff:
  \<open>signed_take_bit n k = k \<longleftrightarrow> - (2 ^ n) \<le> k \<and> k < 2 ^ n\<close>
  for k :: int
  by (auto simp add: signed_take_bit_eq_take_bit_shift take_bit_int_eq_self_iff algebra_simps)

lemma signed_take_bit_int_eq_self:
  \<open>signed_take_bit n k = k\<close> if \<open>- (2 ^ n) \<le> k\<close> \<open>k < 2 ^ n\<close>
  for k :: int
  using that by (simp add: signed_take_bit_int_eq_self_iff)

lemma signed_take_bit_int_less_eq_self_iff:
  \<open>signed_take_bit n k \<le> k \<longleftrightarrow> - (2 ^ n) \<le> k\<close>
  for k :: int
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_eq_self_iff algebra_simps)
    linarith

lemma signed_take_bit_int_less_self_iff:
  \<open>signed_take_bit n k < k \<longleftrightarrow> 2 ^ n \<le> k\<close>
  for k :: int
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_self_iff algebra_simps)

lemma signed_take_bit_int_greater_self_iff:
  \<open>k < signed_take_bit n k \<longleftrightarrow> k < - (2 ^ n)\<close>
  for k :: int
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_self_iff algebra_simps)
    linarith

lemma signed_take_bit_int_greater_eq_self_iff:
  \<open>k \<le> signed_take_bit n k \<longleftrightarrow> k < 2 ^ n\<close>
  for k :: int
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_eq_self_iff algebra_simps)

lemma signed_take_bit_int_greater_eq:
  \<open>k + 2 ^ Suc n \<le> signed_take_bit n k\<close> if \<open>k < - (2 ^ n)\<close>
  for k :: int
  using that take_bit_int_greater_eq [of \<open>k + 2 ^ n\<close> \<open>Suc n\<close>]
  by (simp add: signed_take_bit_eq_take_bit_shift)

lemma signed_take_bit_int_less_eq:
  \<open>signed_take_bit n k \<le> k - 2 ^ Suc n\<close> if \<open>k \<ge> 2 ^ n\<close>
  for k :: int
  using that take_bit_int_less_eq [of \<open>Suc n\<close> \<open>k + 2 ^ n\<close>]
  by (simp add: signed_take_bit_eq_take_bit_shift)

lemma signed_take_bit_Suc_bit0 [simp]:
  \<open>signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\<close>
  by (simp add: signed_take_bit_Suc)

lemma signed_take_bit_Suc_bit1 [simp]:
  \<open>signed_take_bit (Suc n) (numeral (Num.Bit1 k)) = signed_take_bit n (numeral k) * 2 + (1 :: int)\<close>
  by (simp add: signed_take_bit_Suc)

lemma signed_take_bit_Suc_minus_bit0 [simp]:
  \<open>signed_take_bit (Suc n) (- numeral (Num.Bit0 k)) = signed_take_bit n (- numeral k) * (2 :: int)\<close>
  by (simp add: signed_take_bit_Suc)

lemma signed_take_bit_Suc_minus_bit1 [simp]:
  \<open>signed_take_bit (Suc n) (- numeral (Num.Bit1 k)) = signed_take_bit n (- numeral k - 1) * 2 + (1 :: int)\<close>
  by (simp add: signed_take_bit_Suc)

lemma signed_take_bit_numeral_bit0 [simp]:
  \<open>signed_take_bit (numeral l) (numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (numeral k) * (2 :: int)\<close>
  by (simp add: signed_take_bit_rec)

lemma signed_take_bit_numeral_bit1 [simp]:
  \<open>signed_take_bit (numeral l) (numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (numeral k) * 2 + (1 :: int)\<close>
  by (simp add: signed_take_bit_rec)

lemma signed_take_bit_numeral_minus_bit0 [simp]:
  \<open>signed_take_bit (numeral l) (- numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (- numeral k) * (2 :: int)\<close>
  by (simp add: signed_take_bit_rec)

lemma signed_take_bit_numeral_minus_bit1 [simp]:
  \<open>signed_take_bit (numeral l) (- numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (- numeral k - 1) * 2 + (1 :: int)\<close>
  by (simp add: signed_take_bit_rec)

lemma signed_take_bit_code [code]:
  \<open>signed_take_bit n a =
  (let l = take_bit (Suc n) a
   in if bit l n then l + push_bit (Suc n) (- 1) else l)\<close>
proof -
  have *: \<open>take_bit (Suc n) a + push_bit n (- 2) =
    take_bit (Suc n) a OR NOT (mask (Suc n))\<close>
    by (auto simp add: bit_take_bit_iff bit_push_bit_iff bit_not_iff bit_mask_iff disjunctive_add
       simp flip: push_bit_minus_one_eq_not_mask)
  show ?thesis
    by (rule bit_eqI)
      (auto simp add: Let_def * bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq bit_not_iff bit_mask_iff bit_or_iff)
qed


subsection \<open>Instance \<^typ>\<open>nat\<close>\<close>

instantiation nat :: semiring_bit_operations
begin

definition and_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>m AND n = nat (int m AND int n)\<close> for m n :: nat

definition or_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>m OR n = nat (int m OR int n)\<close> for m n :: nat

definition xor_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>m XOR n = nat (int m XOR int n)\<close> for m n :: nat

definition mask_nat :: \<open>nat \<Rightarrow> nat\<close>
  where \<open>mask n = (2 :: nat) ^ n - 1\<close>

definition set_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>set_bit m n = n OR push_bit m 1\<close> for m n :: nat

definition unset_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>unset_bit m n = (if bit n m then n - push_bit m 1 else n)\<close> for m n :: nat

definition flip_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
  where \<open>flip_bit m n = n XOR push_bit m 1\<close> for m n :: nat

instance proof
  fix m n q :: nat
  show \<open>bit (m AND n) q \<longleftrightarrow> bit m q \<and> bit n q\<close>
    by (simp add: and_nat_def bit_simps)
  show \<open>bit (m OR n) q \<longleftrightarrow> bit m q \<or> bit n q\<close>
    by (simp add: or_nat_def bit_simps)
  show \<open>bit (m XOR n) q \<longleftrightarrow> bit m q \<noteq> bit n q\<close>
    by (simp add: xor_nat_def bit_simps)
  show \<open>bit (unset_bit m n) q \<longleftrightarrow> bit n q \<and> m \<noteq> q\<close>
  proof (cases \<open>bit n m\<close>)
    case False
    then show ?thesis by (auto simp add: unset_bit_nat_def)
  next
    case True
    have \<open>push_bit m (drop_bit m n) + take_bit m n = n\<close>
      by (fact bits_ident)
    also from \<open>bit n m\<close> have \<open>drop_bit m n = 2 * drop_bit (Suc m) n  + 1\<close>
      by (simp add: drop_bit_Suc drop_bit_half even_drop_bit_iff_not_bit ac_simps)
    finally have \<open>push_bit m (2 * drop_bit (Suc m) n) + take_bit m n + push_bit m 1 = n\<close>
      by (simp only: push_bit_add ac_simps)
    then have \<open>n - push_bit m 1 = push_bit m (2 * drop_bit (Suc m) n) + take_bit m n\<close>
      by simp
    then have \<open>n - push_bit m 1 = push_bit m (2 * drop_bit (Suc m) n) OR take_bit m n\<close>
      by (simp add: or_nat_def bit_simps flip: disjunctive_add)
    with \<open>bit n m\<close> show ?thesis
      by (auto simp add: unset_bit_nat_def or_nat_def bit_simps)
  qed
qed (simp_all add: mask_nat_def set_bit_nat_def flip_bit_nat_def)

end

lemma and_nat_rec:
  \<open>m AND n = of_bool (odd m \<and> odd n) + 2 * ((m div 2) AND (n div 2))\<close> for m n :: nat
  by (simp add: and_nat_def and_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)

lemma or_nat_rec:
  \<open>m OR n = of_bool (odd m \<or> odd n) + 2 * ((m div 2) OR (n div 2))\<close> for m n :: nat
  by (simp add: or_nat_def or_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)

lemma xor_nat_rec:
  \<open>m XOR n = of_bool (odd m \<noteq> odd n) + 2 * ((m div 2) XOR (n div 2))\<close> for m n :: nat
  by (simp add: xor_nat_def xor_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)

lemma Suc_0_and_eq [simp]:
  \<open>Suc 0 AND n = n mod 2\<close>
  using one_and_eq [of n] by simp

lemma and_Suc_0_eq [simp]:
  \<open>n AND Suc 0 = n mod 2\<close>
  using and_one_eq [of n] by simp

lemma Suc_0_or_eq:
  \<open>Suc 0 OR n = n + of_bool (even n)\<close>
  using one_or_eq [of n] by simp

lemma or_Suc_0_eq:
  \<open>n OR Suc 0 = n + of_bool (even n)\<close>
  using or_one_eq [of n] by simp

lemma Suc_0_xor_eq:
  \<open>Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\<close>
  using one_xor_eq [of n] by simp

lemma xor_Suc_0_eq:
  \<open>n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\<close>
  using xor_one_eq [of n] by simp

context semiring_bit_operations
begin

lemma of_nat_and_eq:
  \<open>of_nat (m AND n) = of_nat m AND of_nat n\<close>
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_and_iff Bit_Operations.bit_and_iff)

lemma of_nat_or_eq:
  \<open>of_nat (m OR n) = of_nat m OR of_nat n\<close>
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_or_iff Bit_Operations.bit_or_iff)

lemma of_nat_xor_eq:
  \<open>of_nat (m XOR n) = of_nat m XOR of_nat n\<close>
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_xor_iff Bit_Operations.bit_xor_iff)

end

context ring_bit_operations
begin

lemma of_nat_mask_eq:
  \<open>of_nat (mask n) = mask n\<close>
  by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_nat_or_eq)

end

lemma Suc_mask_eq_exp:
  \<open>Suc (mask n) = 2 ^ n\<close>
  by (simp add: mask_eq_exp_minus_1)

lemma less_eq_mask:
  \<open>n \<le> mask n\<close>
  by (simp add: mask_eq_exp_minus_1 le_diff_conv2)
    (metis Suc_mask_eq_exp diff_Suc_1 diff_le_diff_pow diff_zero le_refl not_less_eq_eq power_0)

lemma less_mask:
  \<open>n < mask n\<close> if \<open>Suc 0 < n\<close>
proof -
  define m where \<open>m = n - 2\<close>
  with that have *: \<open>n = m + 2\<close>
    by simp
  have \<open>Suc (Suc (Suc m)) < 4 * 2 ^ m\<close>
    by (induction m) simp_all
  then have \<open>Suc (m + 2) < Suc (mask (m + 2))\<close>
    by (simp add: Suc_mask_eq_exp)
  then have \<open>m + 2 < mask (m + 2)\<close>
    by (simp add: less_le)
  with * show ?thesis
    by simp
qed


subsection \<open>Horner sums\<close>

context semiring_bit_shifts
begin

lemma horner_sum_bit_eq_take_bit:
  \<open>horner_sum of_bool 2 (map (bit a) [0..<n]) = take_bit n a\<close>
proof (induction a arbitrary: n rule: bits_induct)
  case (stable a)
  moreover have \<open>bit a = (\<lambda>_. odd a)\<close>
    using stable by (simp add: stable_imp_bit_iff_odd fun_eq_iff)
  moreover have \<open>{q. q < n} = {0..<n}\<close>
    by auto
  ultimately show ?case
    by (simp add: stable_imp_take_bit_eq horner_sum_eq_sum mask_eq_sum_exp)
next
  case (rec a b)
  show ?case
  proof (cases n)
    case 0
    then show ?thesis
      by simp
  next
    case (Suc m)
    have \<open>map (bit (of_bool b + 2 * a)) [0..<Suc m] = b # map (bit (of_bool b + 2 * a)) [Suc 0..<Suc m]\<close>
      by (simp only: upt_conv_Cons) simp
    also have \<open>\<dots> = b # map (bit a) [0..<m]\<close>
      by (simp only: flip: map_Suc_upt) (simp add: bit_Suc rec.hyps)
    finally show ?thesis
      using Suc rec.IH [of m] by (simp add: take_bit_Suc rec.hyps)
        (simp_all add: ac_simps mod_2_eq_odd)
  qed
qed

end

context unique_euclidean_semiring_with_bit_shifts
begin

lemma bit_horner_sum_bit_iff [bit_simps]:
  \<open>bit (horner_sum of_bool 2 bs) n \<longleftrightarrow> n < length bs \<and> bs ! n\<close>
proof (induction bs arbitrary: n)
  case Nil
  then show ?case
    by simp
next
  case (Cons b bs)
  show ?case
  proof (cases n)
    case 0
    then show ?thesis
      by simp
  next
    case (Suc m)
    with bit_rec [of _ n] Cons.prems Cons.IH [of m]
    show ?thesis by simp
  qed
qed

lemma take_bit_horner_sum_bit_eq:
  \<open>take_bit n (horner_sum of_bool 2 bs) = horner_sum of_bool 2 (take n bs)\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_horner_sum_bit_iff)

end

lemma horner_sum_of_bool_2_less:
  \<open>(horner_sum of_bool 2 bs :: int) < 2 ^ length bs\<close>
proof -
  have \<open>(\<Sum>n = 0..<length bs. of_bool (bs ! n) * (2::int) ^ n) \<le> (\<Sum>n = 0..<length bs. 2 ^ n)\<close>
    by (rule sum_mono) simp
  also have \<open>\<dots> = 2 ^ length bs - 1\<close>
    by (induction bs) simp_all
  finally show ?thesis
    by (simp add: horner_sum_eq_sum)
qed


subsection \<open>Symbolic computations on numeral expressions\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>

fun and_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close>
where
  \<open>and_num num.One num.One = Some num.One\<close>
| \<open>and_num num.One (num.Bit0 n) = None\<close>
| \<open>and_num num.One (num.Bit1 n) = Some num.One\<close>
| \<open>and_num (num.Bit0 m) num.One = None\<close>
| \<open>and_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\<close>
| \<open>and_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_num m n)\<close>
| \<open>and_num (num.Bit1 m) num.One = Some num.One\<close>
| \<open>and_num (num.Bit1 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\<close>
| \<open>and_num (num.Bit1 m) (num.Bit1 n) = (case and_num m n of None \<Rightarrow> Some num.One | Some n' \<Rightarrow> Some (num.Bit1 n'))\<close>

fun and_not_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close>
where
  \<open>and_not_num num.One num.One = None\<close>
| \<open>and_not_num num.One (num.Bit0 n) = Some num.One\<close>
| \<open>and_not_num num.One (num.Bit1 n) = None\<close>
| \<open>and_not_num (num.Bit0 m) num.One = Some (num.Bit0 m)\<close>
| \<open>and_not_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_not_num m n)\<close>
| \<open>and_not_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\<close>
| \<open>and_not_num (num.Bit1 m) num.One = Some (num.Bit0 m)\<close>
| \<open>and_not_num (num.Bit1 m) (num.Bit0 n) = (case and_not_num m n of None \<Rightarrow> Some num.One | Some n' \<Rightarrow> Some (num.Bit1 n'))\<close>
| \<open>and_not_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\<close>

fun or_num :: \<open>num \<Rightarrow> num \<Rightarrow> num\<close>
where
  \<open>or_num num.One num.One = num.One\<close>
| \<open>or_num num.One (num.Bit0 n) = num.Bit1 n\<close>
| \<open>or_num num.One (num.Bit1 n) = num.Bit1 n\<close>
| \<open>or_num (num.Bit0 m) num.One = num.Bit1 m\<close>
| \<open>or_num (num.Bit0 m) (num.Bit0 n) = num.Bit0 (or_num m n)\<close>
| \<open>or_num (num.Bit0 m) (num.Bit1 n) = num.Bit1 (or_num m n)\<close>
| \<open>or_num (num.Bit1 m) num.One = num.Bit1 m\<close>
| \<open>or_num (num.Bit1 m) (num.Bit0 n) = num.Bit1 (or_num m n)\<close>
| \<open>or_num (num.Bit1 m) (num.Bit1 n) = num.Bit1 (or_num m n)\<close>

fun or_not_num_neg :: \<open>num \<Rightarrow> num \<Rightarrow> num\<close>
where
  \<open>or_not_num_neg num.One num.One = num.One\<close>
| \<open>or_not_num_neg num.One (num.Bit0 m) = num.Bit1 m\<close>
| \<open>or_not_num_neg num.One (num.Bit1 m) = num.Bit1 m\<close>
| \<open>or_not_num_neg (num.Bit0 n) num.One = num.Bit0 num.One\<close>
| \<open>or_not_num_neg (num.Bit0 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\<close>
| \<open>or_not_num_neg (num.Bit0 n) (num.Bit1 m) = num.Bit0 (or_not_num_neg n m)\<close>
| \<open>or_not_num_neg (num.Bit1 n) num.One = num.One\<close>
| \<open>or_not_num_neg (num.Bit1 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\<close>
| \<open>or_not_num_neg (num.Bit1 n) (num.Bit1 m) = Num.BitM (or_not_num_neg n m)\<close>

fun xor_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close>
where
  \<open>xor_num num.One num.One = None\<close>
| \<open>xor_num num.One (num.Bit0 n) = Some (num.Bit1 n)\<close>
| \<open>xor_num num.One (num.Bit1 n) = Some (num.Bit0 n)\<close>
| \<open>xor_num (num.Bit0 m) num.One = Some (num.Bit1 m)\<close>
| \<open>xor_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (xor_num m n)\<close>
| \<open>xor_num (num.Bit0 m) (num.Bit1 n) = Some (case xor_num m n of None \<Rightarrow> num.One | Some n' \<Rightarrow> num.Bit1 n')\<close>
| \<open>xor_num (num.Bit1 m) num.One = Some (num.Bit0 m)\<close>
| \<open>xor_num (num.Bit1 m) (num.Bit0 n) = Some (case xor_num m n of None \<Rightarrow> num.One | Some n' \<Rightarrow> num.Bit1 n')\<close>
| \<open>xor_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (xor_num m n)\<close>

lemma int_numeral_and_num:
  \<open>numeral m AND numeral n = (case and_num m n of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
  by (induction m n rule: and_num.induct) (simp_all split: option.split)

lemma and_num_eq_None_iff:
  \<open>and_num m n = None \<longleftrightarrow> numeral m AND numeral n = (0::int)\<close>
  by (simp add: int_numeral_and_num split: option.split)

lemma and_num_eq_Some_iff:
  \<open>and_num m n = Some q \<longleftrightarrow> numeral m AND numeral n = (numeral q :: int)\<close>
  by (simp add: int_numeral_and_num split: option.split)

lemma int_numeral_and_not_num:
  \<open>numeral m AND NOT (numeral n) = (case and_not_num m n of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
  by (induction m n rule: and_not_num.induct) (simp_all add: add_One BitM_inc_eq not_int_def split: option.split)

lemma int_numeral_not_and_num:
  \<open>NOT (numeral m) AND numeral n = (case and_not_num n m of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
  using int_numeral_and_not_num [of n m] by (simp add: ac_simps)

lemma and_not_num_eq_None_iff:
  \<open>and_not_num m n = None \<longleftrightarrow> numeral m AND NOT (numeral n) = (0::int)\<close>
  by (simp add: int_numeral_and_not_num split: option.split)

lemma and_not_num_eq_Some_iff:
  \<open>and_not_num m n = Some q \<longleftrightarrow> numeral m AND NOT (numeral n) = (numeral q :: int)\<close>
  by (simp add: int_numeral_and_not_num split: option.split)

lemma int_numeral_or_num:
  \<open>numeral m OR numeral n = (numeral (or_num m n) :: int)\<close>
  by (induction m n rule: or_num.induct) simp_all

lemma numeral_or_num_eq:
  \<open>numeral (or_num m n) = (numeral m OR numeral n :: int)\<close>
  by (simp add: int_numeral_or_num)

lemma int_numeral_or_not_num_neg:
  \<open>numeral m OR NOT (numeral n :: int) = - numeral (or_not_num_neg m n)\<close>
  by (induction m n rule: or_not_num_neg.induct) (simp_all add: add_One BitM_inc_eq not_int_def)

lemma int_numeral_not_or_num_neg:
  \<open>NOT (numeral m) OR (numeral n :: int) = - numeral (or_not_num_neg n m)\<close>
  using int_numeral_or_not_num_neg [of n m] by (simp add: ac_simps)

lemma numeral_or_not_num_eq:
  \<open>numeral (or_not_num_neg m n) = - (numeral m OR NOT (numeral n :: int))\<close>
  using int_numeral_or_not_num_neg [of m n] by simp

lemma int_numeral_xor_num:
  \<open>numeral m XOR numeral n = (case xor_num m n of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
  by (induction m n rule: xor_num.induct) (simp_all split: option.split)

lemma xor_num_eq_None_iff:
  \<open>xor_num m n = None \<longleftrightarrow> numeral m XOR numeral n = (0::int)\<close>
  by (simp add: int_numeral_xor_num split: option.split)

lemma xor_num_eq_Some_iff:
  \<open>xor_num m n = Some q \<longleftrightarrow> numeral m XOR numeral n = (numeral q :: int)\<close>
  by (simp add: int_numeral_xor_num split: option.split)


subsection \<open>Key ideas of bit operations\<close>

text \<open>
  When formalizing bit operations, it is tempting to represent
  bit values as explicit lists over a binary type. This however
  is a bad idea, mainly due to the inherent ambiguities in
  representation concerning repeating leading bits.

  Hence this approach avoids such explicit lists altogether
  following an algebraic path:

  \<^item> Bit values are represented by numeric types: idealized
    unbounded bit values can be represented by type \<^typ>\<open>int\<close>,
    bounded bit values by quotient types over \<^typ>\<open>int\<close>.

  \<^item> (A special case are idealized unbounded bit values ending
    in @{term [source] 0} which can be represented by type \<^typ>\<open>nat\<close> but
    only support a restricted set of operations).

  \<^item> From this idea follows that

      \<^item> multiplication by \<^term>\<open>2 :: int\<close> is a bit shift to the left and

      \<^item> division by \<^term>\<open>2 :: int\<close> is a bit shift to the right.

  \<^item> Concerning bounded bit values, iterated shifts to the left
    may result in eliminating all bits by shifting them all
    beyond the boundary.  The property \<^prop>\<open>(2 :: int) ^ n \<noteq> 0\<close>
    represents that \<^term>\<open>n\<close> is \<^emph>\<open>not\<close> beyond that boundary.

  \<^item> The projection on a single bit is then @{thm bit_iff_odd [where ?'a = int, no_vars]}.

  \<^item> This leads to the most fundamental properties of bit values:

      \<^item> Equality rule: @{thm bit_eqI [where ?'a = int, no_vars]}

      \<^item> Induction rule: @{thm bits_induct [where ?'a = int, no_vars]}

  \<^item> Typical operations are characterized as follows:

      \<^item> Singleton \<^term>\<open>n\<close>th bit: \<^term>\<open>(2 :: int) ^ n\<close>

      \<^item> Bit mask upto bit \<^term>\<open>n\<close>: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]}

      \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]}

      \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]}

      \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]}

      \<^item> Negation: @{thm bit_not_iff [where ?'a = int, no_vars]}

      \<^item> And: @{thm bit_and_iff [where ?'a = int, no_vars]}

      \<^item> Or: @{thm bit_or_iff [where ?'a = int, no_vars]}

      \<^item> Xor: @{thm bit_xor_iff [where ?'a = int, no_vars]}

      \<^item> Set a single bit: @{thm set_bit_def [where ?'a = int, no_vars]}

      \<^item> Unset a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]}

      \<^item> Flip a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]}

      \<^item> Signed truncation, or modulus centered around \<^term>\<open>0::int\<close>: @{thm signed_take_bit_def [no_vars]}

      \<^item> Bit concatenation: @{thm concat_bit_def [no_vars]}

      \<^item> (Bounded) conversion from and to a list of bits: @{thm horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]}
\<close>

no_notation
  "and"  (infixr \<open>AND\<close> 64)
    and or  (infixr \<open>OR\<close>  59)
    and xor  (infixr \<open>XOR\<close> 59)

bundle bit_operations_syntax
begin

notation
  "and"  (infixr \<open>AND\<close> 64)
    and or  (infixr \<open>OR\<close>  59)
    and xor  (infixr \<open>XOR\<close> 59)

end

end