(* Title: HOL/Recdef.thy
Author: Konrad Slind and Markus Wenzel, TU Muenchen
*)
header {* TFL: recursive function definitions *}
theory Recdef
imports Plain Hilbert_Choice
uses
("Tools/TFL/casesplit.ML")
("Tools/TFL/utils.ML")
("Tools/TFL/usyntax.ML")
("Tools/TFL/dcterm.ML")
("Tools/TFL/thms.ML")
("Tools/TFL/rules.ML")
("Tools/TFL/thry.ML")
("Tools/TFL/tfl.ML")
("Tools/TFL/post.ML")
("Tools/recdef.ML")
begin
inductive
wfrec_rel :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b => bool"
for R :: "('a * 'a) set"
and F :: "('a => 'b) => 'a => 'b"
where
wfrecI: "ALL z. (z, x) : R --> wfrec_rel R F z (g z) ==>
wfrec_rel R F x (F g x)"
definition
cut :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b" where
"cut f r x == (%y. if (y,x):r then f y else undefined)"
definition
adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool" where
"adm_wf R F == ALL f g x.
(ALL z. (z, x) : R --> f z = g z) --> F f x = F g x"
definition
wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b" where
"wfrec R F == %x. THE y. wfrec_rel R (%f x. F (cut f R x) x) x y"
subsection{*Well-Founded Recursion*}
text{*cut*}
lemma cuts_eq: "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))"
by (simp add: fun_eq_iff cut_def)
lemma cut_apply: "(x,a):r ==> (cut f r a)(x) = f(x)"
by (simp add: cut_def)
text{*Inductive characterization of wfrec combinator; for details see:
John Harrison, "Inductive definitions: automation and application"*}
lemma wfrec_unique: "[| adm_wf R F; wf R |] ==> EX! y. wfrec_rel R F x y"
apply (simp add: adm_wf_def)
apply (erule_tac a=x in wf_induct)
apply (rule ex1I)
apply (rule_tac g = "%x. THE y. wfrec_rel R F x y" in wfrec_rel.wfrecI)
apply (fast dest!: theI')
apply (erule wfrec_rel.cases, simp)
apply (erule allE, erule allE, erule allE, erule mp)
apply (fast intro: the_equality [symmetric])
done
lemma adm_lemma: "adm_wf R (%f x. F (cut f R x) x)"
apply (simp add: adm_wf_def)
apply (intro strip)
apply (rule cuts_eq [THEN iffD2, THEN subst], assumption)
apply (rule refl)
done
lemma wfrec: "wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"
apply (simp add: wfrec_def)
apply (rule adm_lemma [THEN wfrec_unique, THEN the1_equality], assumption)
apply (rule wfrec_rel.wfrecI)
apply (intro strip)
apply (erule adm_lemma [THEN wfrec_unique, THEN theI'])
done
text{** This form avoids giant explosions in proofs. NOTE USE OF ==*}
lemma def_wfrec: "[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a"
apply auto
apply (blast intro: wfrec)
done
lemma tfl_wf_induct: "ALL R. wf R -->
(ALL P. (ALL x. (ALL y. (y,x):R --> P y) --> P x) --> (ALL x. P x))"
apply clarify
apply (rule_tac r = R and P = P and a = x in wf_induct, assumption, blast)
done
lemma tfl_cut_apply: "ALL f R. (x,a):R --> (cut f R a)(x) = f(x)"
apply clarify
apply (rule cut_apply, assumption)
done
lemma tfl_wfrec:
"ALL M R f. (f=wfrec R M) --> wf R --> (ALL x. f x = M (cut f R x) x)"
apply clarify
apply (erule wfrec)
done
lemma tfl_eq_True: "(x = True) --> x"
by blast
lemma tfl_rev_eq_mp: "(x = y) --> y --> x";
by blast
lemma tfl_simp_thm: "(x --> y) --> (x = x') --> (x' --> y)"
by blast
lemma tfl_P_imp_P_iff_True: "P ==> P = True"
by blast
lemma tfl_imp_trans: "(A --> B) ==> (B --> C) ==> (A --> C)"
by blast
lemma tfl_disj_assoc: "(a \<or> b) \<or> c == a \<or> (b \<or> c)"
by simp
lemma tfl_disjE: "P \<or> Q ==> P --> R ==> Q --> R ==> R"
by blast
lemma tfl_exE: "\<exists>x. P x ==> \<forall>x. P x --> Q ==> Q"
by blast
use "Tools/TFL/casesplit.ML"
use "Tools/TFL/utils.ML"
use "Tools/TFL/usyntax.ML"
use "Tools/TFL/dcterm.ML"
use "Tools/TFL/thms.ML"
use "Tools/TFL/rules.ML"
use "Tools/TFL/thry.ML"
use "Tools/TFL/tfl.ML"
use "Tools/TFL/post.ML"
use "Tools/recdef.ML"
setup Recdef.setup
text {*Wellfoundedness of @{text same_fst}*}
definition
same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
where
"same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
--{*For @{text rec_def} declarations where the first n parameters
stay unchanged in the recursive call. *}
lemma same_fstI [intro!]:
"[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R"
by (simp add: same_fst_def)
lemma wf_same_fst:
assumes prem: "(!!x. P x ==> wf(R x))"
shows "wf(same_fst P R)"
apply (simp cong del: imp_cong add: wf_def same_fst_def)
apply (intro strip)
apply (rename_tac a b)
apply (case_tac "wf (R a)")
apply (erule_tac a = b in wf_induct, blast)
apply (blast intro: prem)
done
text {*Rule setup*}
lemmas [recdef_simp] =
inv_image_def
measure_def
lex_prod_def
same_fst_def
less_Suc_eq [THEN iffD2]
lemmas [recdef_cong] =
if_cong let_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong
lemmas [recdef_wf] =
wf_trancl
wf_less_than
wf_lex_prod
wf_inv_image
wf_measure
wf_pred_nat
wf_same_fst
wf_empty
end