theory CR
imports Lam_Funs
begin
text \<open>The Church-Rosser proof from Barendregt's book\<close>
lemma forget:
assumes asm: "x\<sharp>L"
shows "L[x::=P] = L"
using asm
proof (nominal_induct L avoiding: x P rule: lam.strong_induct)
case (Var z)
have "x\<sharp>Var z" by fact
thus "(Var z)[x::=P] = (Var z)" by (simp add: fresh_atm)
next
case (App M1 M2)
have "x\<sharp>App M1 M2" by fact
moreover
have ih1: "x\<sharp>M1 \<Longrightarrow> M1[x::=P] = M1" by fact
moreover
have ih1: "x\<sharp>M2 \<Longrightarrow> M2[x::=P] = M2" by fact
ultimately show "(App M1 M2)[x::=P] = (App M1 M2)" by simp
next
case (Lam z M)
have vc: "z\<sharp>x" "z\<sharp>P" by fact+
have ih: "x\<sharp>M \<Longrightarrow> M[x::=P] = M" by fact
have asm: "x\<sharp>Lam [z].M" by fact
then have "x\<sharp>M" using vc by (simp add: fresh_atm abs_fresh)
then have "M[x::=P] = M" using ih by simp
then show "(Lam [z].M)[x::=P] = Lam [z].M" using vc by simp
qed
lemma forget_automatic:
assumes asm: "x\<sharp>L"
shows "L[x::=P] = L"
using asm
by (nominal_induct L avoiding: x P rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma fresh_fact:
fixes z::"name"
assumes asms: "z\<sharp>N" "z\<sharp>L"
shows "z\<sharp>(N[y::=L])"
using asms
proof (nominal_induct N avoiding: z y L rule: lam.strong_induct)
case (Var u)
have "z\<sharp>(Var u)" "z\<sharp>L" by fact+
thus "z\<sharp>((Var u)[y::=L])" by simp
next
case (App N1 N2)
have ih1: "\<lbrakk>z\<sharp>N1; z\<sharp>L\<rbrakk> \<Longrightarrow> z\<sharp>N1[y::=L]" by fact
moreover
have ih2: "\<lbrakk>z\<sharp>N2; z\<sharp>L\<rbrakk> \<Longrightarrow> z\<sharp>N2[y::=L]" by fact
moreover
have "z\<sharp>App N1 N2" "z\<sharp>L" by fact+
ultimately show "z\<sharp>((App N1 N2)[y::=L])" by simp
next
case (Lam u N1)
have vc: "u\<sharp>z" "u\<sharp>y" "u\<sharp>L" by fact+
have "z\<sharp>Lam [u].N1" by fact
hence "z\<sharp>N1" using vc by (simp add: abs_fresh fresh_atm)
moreover
have ih: "\<lbrakk>z\<sharp>N1; z\<sharp>L\<rbrakk> \<Longrightarrow> z\<sharp>(N1[y::=L])" by fact
moreover
have "z\<sharp>L" by fact
ultimately show "z\<sharp>(Lam [u].N1)[y::=L]" using vc by (simp add: abs_fresh)
qed
lemma fresh_fact_automatic:
fixes z::"name"
assumes asms: "z\<sharp>N" "z\<sharp>L"
shows "z\<sharp>(N[y::=L])"
using asms
by (nominal_induct N avoiding: z y L rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma fresh_fact':
fixes a::"name"
assumes a: "a\<sharp>t2"
shows "a\<sharp>t1[a::=t2]"
using a
by (nominal_induct t1 avoiding: a t2 rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma substitution_lemma:
assumes a: "x\<noteq>y"
and b: "x\<sharp>L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a b
proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z) (* case 1: Variables*)
have "x\<noteq>y" by fact
have "x\<sharp>L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ (*Case 1.1*)
assume "z=x"
have "(1)": "?LHS = N[y::=L]" using \<open>z=x\<close> by simp
have "(2)": "?RHS = N[y::=L]" using \<open>z=x\<close> \<open>x\<noteq>y\<close> by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp
}
moreover
{ (*Case 1.2*)
assume "z=y" and "z\<noteq>x"
have "(1)": "?LHS = L" using \<open>z\<noteq>x\<close> \<open>z=y\<close> by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using \<open>z=y\<close> by simp
have "(3)": "L[x::=N[y::=L]] = L" using \<open>x\<sharp>L\<close> by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp
}
moreover
{ (*Case 1.3*)
assume "z\<noteq>x" and "z\<noteq>y"
have "(1)": "?LHS = Var z" using \<open>z\<noteq>x\<close> \<open>z\<noteq>y\<close> by simp
have "(2)": "?RHS = Var z" using \<open>z\<noteq>x\<close> \<open>z\<noteq>y\<close> by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp
}
ultimately show "?LHS = ?RHS" by blast
qed
next
case (Lam z M1) (* case 2: lambdas *)
have ih: "\<lbrakk>x\<noteq>y; x\<sharp>L\<rbrakk> \<Longrightarrow> M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x\<noteq>y" by fact
have "x\<sharp>L" by fact
have fs: "z\<sharp>x" "z\<sharp>y" "z\<sharp>N" "z\<sharp>L" by fact+
hence "z\<sharp>N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L] = (Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using \<open>z\<sharp>x\<close> \<open>z\<sharp>y\<close> \<open>z\<sharp>N\<close> \<open>z\<sharp>L\<close> by simp
also from ih have "\<dots> = Lam [z].(M1[y::=L][x::=N[y::=L]])" using \<open>x\<noteq>y\<close> \<open>x\<sharp>L\<close> by simp
also have "\<dots> = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using \<open>z\<sharp>x\<close> \<open>z\<sharp>N[y::=L]\<close> by simp
also have "\<dots> = ?RHS" using \<open>z\<sharp>y\<close> \<open>z\<sharp>L\<close> by simp
finally show "?LHS = ?RHS" .
qed
next
case (App M1 M2) (* case 3: applications *)
thus "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed
lemma substitution_lemma_automatic:
assumes asm: "x\<noteq>y" "x\<sharp>L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
(auto simp add: fresh_fact forget)
section \<open>Beta Reduction\<close>
inductive
"Beta" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^sub>\<beta> _" [80,80] 80)
where
b1[intro]: "s1\<longrightarrow>\<^sub>\<beta>s2 \<Longrightarrow> (App s1 t)\<longrightarrow>\<^sub>\<beta>(App s2 t)"
| b2[intro]: "s1\<longrightarrow>\<^sub>\<beta>s2 \<Longrightarrow> (App t s1)\<longrightarrow>\<^sub>\<beta>(App t s2)"
| b3[intro]: "s1\<longrightarrow>\<^sub>\<beta>s2 \<Longrightarrow> (Lam [a].s1)\<longrightarrow>\<^sub>\<beta> (Lam [a].s2)"
| b4[intro]: "a\<sharp>s2 \<Longrightarrow> (App (Lam [a].s1) s2)\<longrightarrow>\<^sub>\<beta>(s1[a::=s2])"
equivariance Beta
nominal_inductive Beta
by (simp_all add: abs_fresh fresh_fact')
inductive
"Beta_star" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^sub>\<beta>\<^sup>* _" [80,80] 80)
where
bs1[intro, simp]: "M \<longrightarrow>\<^sub>\<beta>\<^sup>* M"
| bs2[intro]: "\<lbrakk>M1\<longrightarrow>\<^sub>\<beta>\<^sup>* M2; M2 \<longrightarrow>\<^sub>\<beta> M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>\<^sub>\<beta>\<^sup>* M3"
equivariance Beta_star
lemma beta_star_trans:
assumes a1: "M1\<longrightarrow>\<^sub>\<beta>\<^sup>* M2"
and a2: "M2\<longrightarrow>\<^sub>\<beta>\<^sup>* M3"
shows "M1 \<longrightarrow>\<^sub>\<beta>\<^sup>* M3"
using a2 a1
by (induct) (auto)
section \<open>One-Reduction\<close>
inductive
One :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^sub>1 _" [80,80] 80)
where
o1[intro!]: "M\<longrightarrow>\<^sub>1M"
| o2[simp,intro!]: "\<lbrakk>t1\<longrightarrow>\<^sub>1t2;s1\<longrightarrow>\<^sub>1s2\<rbrakk> \<Longrightarrow> (App t1 s1)\<longrightarrow>\<^sub>1(App t2 s2)"
| o3[simp,intro!]: "s1\<longrightarrow>\<^sub>1s2 \<Longrightarrow> (Lam [a].s1)\<longrightarrow>\<^sub>1(Lam [a].s2)"
| o4[simp,intro!]: "\<lbrakk>a\<sharp>(s1,s2); s1\<longrightarrow>\<^sub>1s2;t1\<longrightarrow>\<^sub>1t2\<rbrakk> \<Longrightarrow> (App (Lam [a].t1) s1)\<longrightarrow>\<^sub>1(t2[a::=s2])"
equivariance One
nominal_inductive One
by (simp_all add: abs_fresh fresh_fact')
inductive
"One_star" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^sub>1\<^sup>* _" [80,80] 80)
where
os1[intro, simp]: "M \<longrightarrow>\<^sub>1\<^sup>* M"
| os2[intro]: "\<lbrakk>M1\<longrightarrow>\<^sub>1\<^sup>* M2; M2 \<longrightarrow>\<^sub>1 M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>\<^sub>1\<^sup>* M3"
equivariance One_star
lemma one_star_trans:
assumes a1: "M1\<longrightarrow>\<^sub>1\<^sup>* M2"
and a2: "M2\<longrightarrow>\<^sub>1\<^sup>* M3"
shows "M1\<longrightarrow>\<^sub>1\<^sup>* M3"
using a2 a1
by (induct) (auto)
lemma one_fresh_preserv:
fixes a :: "name"
assumes a: "t\<longrightarrow>\<^sub>1s"
and b: "a\<sharp>t"
shows "a\<sharp>s"
using a b
proof (induct)
case o1 thus ?case by simp
next
case o2 thus ?case by simp
next
case (o3 s1 s2 c)
have ih: "a\<sharp>s1 \<Longrightarrow> a\<sharp>s2" by fact
have c: "a\<sharp>Lam [c].s1" by fact
show ?case
proof (cases "a=c")
assume "a=c" thus "a\<sharp>Lam [c].s2" by (simp add: abs_fresh)
next
assume d: "a\<noteq>c"
with c have "a\<sharp>s1" by (simp add: abs_fresh)
hence "a\<sharp>s2" using ih by simp
thus "a\<sharp>Lam [c].s2" using d by (simp add: abs_fresh)
qed
next
case (o4 c t1 t2 s1 s2)
have i1: "a\<sharp>t1 \<Longrightarrow> a\<sharp>t2" by fact
have i2: "a\<sharp>s1 \<Longrightarrow> a\<sharp>s2" by fact
have as: "a\<sharp>App (Lam [c].s1) t1" by fact
hence c1: "a\<sharp>Lam [c].s1" and c2: "a\<sharp>t1" by (simp add: fresh_prod)+
from c2 i1 have c3: "a\<sharp>t2" by simp
show "a\<sharp>s2[c::=t2]"
proof (cases "a=c")
assume "a=c"
thus "a\<sharp>s2[c::=t2]" using c3 by (simp add: fresh_fact')
next
assume d1: "a\<noteq>c"
from c1 d1 have "a\<sharp>s1" by (simp add: abs_fresh)
hence "a\<sharp>s2" using i2 by simp
thus "a\<sharp>s2[c::=t2]" using c3 by (simp add: fresh_fact)
qed
qed
lemma one_fresh_preserv_automatic:
fixes a :: "name"
assumes a: "t\<longrightarrow>\<^sub>1s"
and b: "a\<sharp>t"
shows "a\<sharp>s"
using a b
apply(nominal_induct avoiding: a rule: One.strong_induct)
apply(auto simp add: abs_fresh fresh_atm fresh_fact)
done
lemma subst_rename:
assumes a: "c\<sharp>t1"
shows "t1[a::=t2] = ([(c,a)]\<bullet>t1)[c::=t2]"
using a
by (nominal_induct t1 avoiding: a c t2 rule: lam.strong_induct)
(auto simp add: calc_atm fresh_atm abs_fresh)
lemma one_abs:
assumes a: "Lam [a].t\<longrightarrow>\<^sub>1t'"
shows "\<exists>t''. t'=Lam [a].t'' \<and> t\<longrightarrow>\<^sub>1t''"
proof -
have "a\<sharp>Lam [a].t" by (simp add: abs_fresh)
with a have "a\<sharp>t'" by (simp add: one_fresh_preserv)
with a show ?thesis
by (cases rule: One.strong_cases[where a="a" and aa="a"])
(auto simp add: lam.inject abs_fresh alpha)
qed
lemma one_app:
assumes a: "App t1 t2 \<longrightarrow>\<^sub>1 t'"
shows "(\<exists>s1 s2. t' = App s1 s2 \<and> t1 \<longrightarrow>\<^sub>1 s1 \<and> t2 \<longrightarrow>\<^sub>1 s2) \<or>
(\<exists>a s s1 s2. t1 = Lam [a].s \<and> t' = s1[a::=s2] \<and> s \<longrightarrow>\<^sub>1 s1 \<and> t2 \<longrightarrow>\<^sub>1 s2 \<and> a\<sharp>(t2,s2))"
using a by (erule_tac One.cases) (auto simp add: lam.inject)
lemma one_red:
assumes a: "App (Lam [a].t1) t2 \<longrightarrow>\<^sub>1 M" "a\<sharp>(t2,M)"
shows "(\<exists>s1 s2. M = App (Lam [a].s1) s2 \<and> t1 \<longrightarrow>\<^sub>1 s1 \<and> t2 \<longrightarrow>\<^sub>1 s2) \<or>
(\<exists>s1 s2. M = s1[a::=s2] \<and> t1 \<longrightarrow>\<^sub>1 s1 \<and> t2 \<longrightarrow>\<^sub>1 s2)"
using a
by (cases rule: One.strong_cases [where a="a" and aa="a"])
(auto dest: one_abs simp add: lam.inject abs_fresh alpha fresh_prod)
text \<open>first case in Lemma 3.2.4\<close>
lemma one_subst_aux:
assumes a: "N\<longrightarrow>\<^sub>1N'"
shows "M[x::=N] \<longrightarrow>\<^sub>1 M[x::=N']"
using a
proof (nominal_induct M avoiding: x N N' rule: lam.strong_induct)
case (Var y)
thus "Var y[x::=N] \<longrightarrow>\<^sub>1 Var y[x::=N']" by (cases "x=y") auto
next
case (App P Q) (* application case - third line *)
thus "(App P Q)[x::=N] \<longrightarrow>\<^sub>1 (App P Q)[x::=N']" using o2 by simp
next
case (Lam y P) (* abstraction case - fourth line *)
thus "(Lam [y].P)[x::=N] \<longrightarrow>\<^sub>1 (Lam [y].P)[x::=N']" using o3 by simp
qed
lemma one_subst_aux_automatic:
assumes a: "N\<longrightarrow>\<^sub>1N'"
shows "M[x::=N] \<longrightarrow>\<^sub>1 M[x::=N']"
using a
by (nominal_induct M avoiding: x N N' rule: lam.strong_induct)
(auto simp add: fresh_prod fresh_atm)
lemma one_subst:
assumes a: "M\<longrightarrow>\<^sub>1M'"
and b: "N\<longrightarrow>\<^sub>1N'"
shows "M[x::=N]\<longrightarrow>\<^sub>1M'[x::=N']"
using a b
proof (nominal_induct M M' avoiding: N N' x rule: One.strong_induct)
case (o1 M)
thus ?case by (simp add: one_subst_aux)
next
case (o2 M1 M2 N1 N2)
thus ?case by simp
next
case (o3 a M1 M2)
thus ?case by simp
next
case (o4 a N1 N2 M1 M2 N N' x)
have vc: "a\<sharp>N" "a\<sharp>N'" "a\<sharp>x" "a\<sharp>N1" "a\<sharp>N2" by fact+
have asm: "N\<longrightarrow>\<^sub>1N'" by fact
show ?case
proof -
have "(App (Lam [a].M1) N1)[x::=N] = App (Lam [a].(M1[x::=N])) (N1[x::=N])" using vc by simp
moreover have "App (Lam [a].(M1[x::=N])) (N1[x::=N]) \<longrightarrow>\<^sub>1 M2[x::=N'][a::=N2[x::=N']]"
using o4 asm by (simp add: fresh_fact)
moreover have "M2[x::=N'][a::=N2[x::=N']] = M2[a::=N2][x::=N']"
using vc by (simp add: substitution_lemma fresh_atm)
ultimately show "(App (Lam [a].M1) N1)[x::=N] \<longrightarrow>\<^sub>1 M2[a::=N2][x::=N']" by simp
qed
qed
lemma one_subst_automatic:
assumes a: "M\<longrightarrow>\<^sub>1M'"
and b: "N\<longrightarrow>\<^sub>1N'"
shows "M[x::=N]\<longrightarrow>\<^sub>1M'[x::=N']"
using a b
by (nominal_induct M M' avoiding: N N' x rule: One.strong_induct)
(auto simp add: one_subst_aux substitution_lemma fresh_atm fresh_fact)
lemma diamond[rule_format]:
fixes M :: "lam"
and M1:: "lam"
assumes a: "M\<longrightarrow>\<^sub>1M1"
and b: "M\<longrightarrow>\<^sub>1M2"
shows "\<exists>M3. M1\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3"
using a b
proof (nominal_induct avoiding: M1 M2 rule: One.strong_induct)
case (o1 M) (* case 1 --- M1 = M *)
thus "\<exists>M3. M\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" by blast
next
case (o4 x Q Q' P P') (* case 2 --- a beta-reduction occurs*)
have vc: "x\<sharp>Q" "x\<sharp>Q'" "x\<sharp>M2" by fact+
have i1: "\<And>M2. Q \<longrightarrow>\<^sub>1M2 \<Longrightarrow> (\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3)" by fact
have i2: "\<And>M2. P \<longrightarrow>\<^sub>1M2 \<Longrightarrow> (\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3)" by fact
have "App (Lam [x].P) Q \<longrightarrow>\<^sub>1 M2" by fact
hence "(\<exists>P' Q'. M2 = App (Lam [x].P') Q' \<and> P\<longrightarrow>\<^sub>1P' \<and> Q\<longrightarrow>\<^sub>1Q') \<or>
(\<exists>P' Q'. M2 = P'[x::=Q'] \<and> P\<longrightarrow>\<^sub>1P' \<and> Q\<longrightarrow>\<^sub>1Q')" using vc by (simp add: one_red)
moreover (* subcase 2.1 *)
{ assume "\<exists>P' Q'. M2 = App (Lam [x].P') Q' \<and> P\<longrightarrow>\<^sub>1P' \<and> Q\<longrightarrow>\<^sub>1Q'"
then obtain P'' and Q'' where
b1: "M2=App (Lam [x].P'') Q''" and b2: "P\<longrightarrow>\<^sub>1P''" and b3: "Q\<longrightarrow>\<^sub>1Q''" by blast
from b2 i2 have "(\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> P''\<longrightarrow>\<^sub>1M3)" by simp
then obtain P''' where
c1: "P'\<longrightarrow>\<^sub>1P'''" and c2: "P''\<longrightarrow>\<^sub>1P'''" by force
from b3 i1 have "(\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> Q''\<longrightarrow>\<^sub>1M3)" by simp
then obtain Q''' where
d1: "Q'\<longrightarrow>\<^sub>1Q'''" and d2: "Q''\<longrightarrow>\<^sub>1Q'''" by force
from c1 c2 d1 d2
have "P'[x::=Q']\<longrightarrow>\<^sub>1P'''[x::=Q'''] \<and> App (Lam [x].P'') Q'' \<longrightarrow>\<^sub>1 P'''[x::=Q''']"
using vc b3 by (auto simp add: one_subst one_fresh_preserv)
hence "\<exists>M3. P'[x::=Q']\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" using b1 by blast
}
moreover (* subcase 2.2 *)
{ assume "\<exists>P' Q'. M2 = P'[x::=Q'] \<and> P\<longrightarrow>\<^sub>1P' \<and> Q\<longrightarrow>\<^sub>1Q'"
then obtain P'' Q'' where
b1: "M2=P''[x::=Q'']" and b2: "P\<longrightarrow>\<^sub>1P''" and b3: "Q\<longrightarrow>\<^sub>1Q''" by blast
from b2 i2 have "(\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> P''\<longrightarrow>\<^sub>1M3)" by simp
then obtain P''' where
c1: "P'\<longrightarrow>\<^sub>1P'''" and c2: "P''\<longrightarrow>\<^sub>1P'''" by blast
from b3 i1 have "(\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> Q''\<longrightarrow>\<^sub>1M3)" by simp
then obtain Q''' where
d1: "Q'\<longrightarrow>\<^sub>1Q'''" and d2: "Q''\<longrightarrow>\<^sub>1Q'''" by blast
from c1 c2 d1 d2
have "P'[x::=Q']\<longrightarrow>\<^sub>1P'''[x::=Q'''] \<and> P''[x::=Q'']\<longrightarrow>\<^sub>1P'''[x::=Q''']"
by (force simp add: one_subst)
hence "\<exists>M3. P'[x::=Q']\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" using b1 by blast
}
ultimately show "\<exists>M3. P'[x::=Q']\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" by blast
next
case (o2 P P' Q Q') (* case 3 *)
have i0: "P\<longrightarrow>\<^sub>1P'" by fact
have i0': "Q\<longrightarrow>\<^sub>1Q'" by fact
have i1: "\<And>M2. Q \<longrightarrow>\<^sub>1M2 \<Longrightarrow> (\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3)" by fact
have i2: "\<And>M2. P \<longrightarrow>\<^sub>1M2 \<Longrightarrow> (\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3)" by fact
assume "App P Q \<longrightarrow>\<^sub>1 M2"
hence "(\<exists>P'' Q''. M2 = App P'' Q'' \<and> P\<longrightarrow>\<^sub>1P'' \<and> Q\<longrightarrow>\<^sub>1Q'') \<or>
(\<exists>x P' P'' Q'. P = Lam [x].P' \<and> M2 = P''[x::=Q'] \<and> P'\<longrightarrow>\<^sub>1 P'' \<and> Q\<longrightarrow>\<^sub>1Q' \<and> x\<sharp>(Q,Q'))"
by (simp add: one_app[simplified])
moreover (* subcase 3.1 *)
{ assume "\<exists>P'' Q''. M2 = App P'' Q'' \<and> P\<longrightarrow>\<^sub>1P'' \<and> Q\<longrightarrow>\<^sub>1Q''"
then obtain P'' and Q'' where
b1: "M2=App P'' Q''" and b2: "P\<longrightarrow>\<^sub>1P''" and b3: "Q\<longrightarrow>\<^sub>1Q''" by blast
from b2 i2 have "(\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> P''\<longrightarrow>\<^sub>1M3)" by simp
then obtain P''' where
c1: "P'\<longrightarrow>\<^sub>1P'''" and c2: "P''\<longrightarrow>\<^sub>1P'''" by blast
from b3 i1 have "\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> Q''\<longrightarrow>\<^sub>1M3" by simp
then obtain Q''' where
d1: "Q'\<longrightarrow>\<^sub>1Q'''" and d2: "Q''\<longrightarrow>\<^sub>1Q'''" by blast
from c1 c2 d1 d2
have "App P' Q'\<longrightarrow>\<^sub>1App P''' Q''' \<and> App P'' Q'' \<longrightarrow>\<^sub>1 App P''' Q'''" by blast
hence "\<exists>M3. App P' Q'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" using b1 by blast
}
moreover (* subcase 3.2 *)
{ assume "\<exists>x P1 P'' Q''. P = Lam [x].P1 \<and> M2 = P''[x::=Q''] \<and> P1\<longrightarrow>\<^sub>1 P'' \<and> Q\<longrightarrow>\<^sub>1Q'' \<and> x\<sharp>(Q,Q'')"
then obtain x P1 P1'' Q'' where
b0: "P = Lam [x].P1" and b1: "M2 = P1''[x::=Q'']" and
b2: "P1\<longrightarrow>\<^sub>1P1''" and b3: "Q\<longrightarrow>\<^sub>1Q''" and vc: "x\<sharp>(Q,Q'')" by blast
from b0 i0 have "\<exists>P1'. P'=Lam [x].P1' \<and> P1\<longrightarrow>\<^sub>1P1'" by (simp add: one_abs)
then obtain P1' where g1: "P'=Lam [x].P1'" and g2: "P1\<longrightarrow>\<^sub>1P1'" by blast
from g1 b0 b2 i2 have "(\<exists>M3. (Lam [x].P1')\<longrightarrow>\<^sub>1M3 \<and> (Lam [x].P1'')\<longrightarrow>\<^sub>1M3)" by simp
then obtain P1''' where
c1: "(Lam [x].P1')\<longrightarrow>\<^sub>1P1'''" and c2: "(Lam [x].P1'')\<longrightarrow>\<^sub>1P1'''" by blast
from c1 have "\<exists>R1. P1'''=Lam [x].R1 \<and> P1'\<longrightarrow>\<^sub>1R1" by (simp add: one_abs)
then obtain R1 where r1: "P1'''=Lam [x].R1" and r2: "P1'\<longrightarrow>\<^sub>1R1" by blast
from c2 have "\<exists>R2. P1'''=Lam [x].R2 \<and> P1''\<longrightarrow>\<^sub>1R2" by (simp add: one_abs)
then obtain R2 where r3: "P1'''=Lam [x].R2" and r4: "P1''\<longrightarrow>\<^sub>1R2" by blast
from r1 r3 have r5: "R1=R2" by (simp add: lam.inject alpha)
from b3 i1 have "(\<exists>M3. Q'\<longrightarrow>\<^sub>1M3 \<and> Q''\<longrightarrow>\<^sub>1M3)" by simp
then obtain Q''' where
d1: "Q'\<longrightarrow>\<^sub>1Q'''" and d2: "Q''\<longrightarrow>\<^sub>1Q'''" by blast
from g1 r2 d1 r4 r5 d2
have "App P' Q'\<longrightarrow>\<^sub>1R1[x::=Q'''] \<and> P1''[x::=Q'']\<longrightarrow>\<^sub>1R1[x::=Q''']"
using vc i0' by (simp add: one_subst one_fresh_preserv)
hence "\<exists>M3. App P' Q'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" using b1 by blast
}
ultimately show "\<exists>M3. App P' Q'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" by blast
next
case (o3 P P' x) (* case 4 *)
have i1: "P\<longrightarrow>\<^sub>1P'" by fact
have i2: "\<And>M2. P \<longrightarrow>\<^sub>1M2 \<Longrightarrow> (\<exists>M3. P'\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3)" by fact
have "(Lam [x].P)\<longrightarrow>\<^sub>1 M2" by fact
hence "\<exists>P''. M2=Lam [x].P'' \<and> P\<longrightarrow>\<^sub>1P''" by (simp add: one_abs)
then obtain P'' where b1: "M2=Lam [x].P''" and b2: "P\<longrightarrow>\<^sub>1P''" by blast
from i2 b1 b2 have "\<exists>M3. (Lam [x].P')\<longrightarrow>\<^sub>1M3 \<and> (Lam [x].P'')\<longrightarrow>\<^sub>1M3" by blast
then obtain M3 where c1: "(Lam [x].P')\<longrightarrow>\<^sub>1M3" and c2: "(Lam [x].P'')\<longrightarrow>\<^sub>1M3" by blast
from c1 have "\<exists>R1. M3=Lam [x].R1 \<and> P'\<longrightarrow>\<^sub>1R1" by (simp add: one_abs)
then obtain R1 where r1: "M3=Lam [x].R1" and r2: "P'\<longrightarrow>\<^sub>1R1" by blast
from c2 have "\<exists>R2. M3=Lam [x].R2 \<and> P''\<longrightarrow>\<^sub>1R2" by (simp add: one_abs)
then obtain R2 where r3: "M3=Lam [x].R2" and r4: "P''\<longrightarrow>\<^sub>1R2" by blast
from r1 r3 have r5: "R1=R2" by (simp add: lam.inject alpha)
from r2 r4 have "(Lam [x].P')\<longrightarrow>\<^sub>1(Lam [x].R1) \<and> (Lam [x].P'')\<longrightarrow>\<^sub>1(Lam [x].R2)"
by (simp add: one_subst)
thus "\<exists>M3. (Lam [x].P')\<longrightarrow>\<^sub>1M3 \<and> M2\<longrightarrow>\<^sub>1M3" using b1 r5 by blast
qed
lemma one_lam_cong:
assumes a: "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2"
shows "(Lam [a].t1)\<longrightarrow>\<^sub>\<beta>\<^sup>*(Lam [a].t2)"
using a
proof induct
case bs1 thus ?case by simp
next
case (bs2 y z)
thus ?case by (blast dest: b3)
qed
lemma one_app_congL:
assumes a: "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2"
shows "App t1 s\<longrightarrow>\<^sub>\<beta>\<^sup>* App t2 s"
using a
proof induct
case bs1 thus ?case by simp
next
case bs2 thus ?case by (blast dest: b1)
qed
lemma one_app_congR:
assumes a: "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2"
shows "App s t1 \<longrightarrow>\<^sub>\<beta>\<^sup>* App s t2"
using a
proof induct
case bs1 thus ?case by simp
next
case bs2 thus ?case by (blast dest: b2)
qed
lemma one_app_cong:
assumes a1: "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2"
and a2: "s1\<longrightarrow>\<^sub>\<beta>\<^sup>*s2"
shows "App t1 s1\<longrightarrow>\<^sub>\<beta>\<^sup>* App t2 s2"
proof -
have "App t1 s1 \<longrightarrow>\<^sub>\<beta>\<^sup>* App t2 s1" using a1 by (rule one_app_congL)
moreover
have "App t2 s1 \<longrightarrow>\<^sub>\<beta>\<^sup>* App t2 s2" using a2 by (rule one_app_congR)
ultimately show ?thesis by (rule beta_star_trans)
qed
lemma one_beta_star:
assumes a: "(t1\<longrightarrow>\<^sub>1t2)"
shows "(t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2)"
using a
proof(nominal_induct rule: One.strong_induct)
case o1 thus ?case by simp
next
case o2 thus ?case by (blast intro!: one_app_cong)
next
case o3 thus ?case by (blast intro!: one_lam_cong)
next
case (o4 a s1 s2 t1 t2)
have vc: "a\<sharp>s1" "a\<sharp>s2" by fact+
have a1: "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t2" and a2: "s1\<longrightarrow>\<^sub>\<beta>\<^sup>*s2" by fact+
have c1: "(App (Lam [a].t2) s2) \<longrightarrow>\<^sub>\<beta> (t2 [a::= s2])" using vc by (simp add: b4)
from a1 a2 have c2: "App (Lam [a].t1 ) s1 \<longrightarrow>\<^sub>\<beta>\<^sup>* App (Lam [a].t2 ) s2"
by (blast intro!: one_app_cong one_lam_cong)
show ?case using c2 c1 by (blast intro: beta_star_trans)
qed
lemma one_star_lam_cong:
assumes a: "t1\<longrightarrow>\<^sub>1\<^sup>*t2"
shows "(Lam [a].t1)\<longrightarrow>\<^sub>1\<^sup>* (Lam [a].t2)"
using a
proof induct
case os1 thus ?case by simp
next
case os2 thus ?case by (blast intro: one_star_trans)
qed
lemma one_star_app_congL:
assumes a: "t1\<longrightarrow>\<^sub>1\<^sup>*t2"
shows "App t1 s\<longrightarrow>\<^sub>1\<^sup>* App t2 s"
using a
proof induct
case os1 thus ?case by simp
next
case os2 thus ?case by (blast intro: one_star_trans)
qed
lemma one_star_app_congR:
assumes a: "t1\<longrightarrow>\<^sub>1\<^sup>*t2"
shows "App s t1 \<longrightarrow>\<^sub>1\<^sup>* App s t2"
using a
proof induct
case os1 thus ?case by simp
next
case os2 thus ?case by (blast intro: one_star_trans)
qed
lemma beta_one_star:
assumes a: "t1\<longrightarrow>\<^sub>\<beta>t2"
shows "t1\<longrightarrow>\<^sub>1\<^sup>*t2"
using a
proof(induct)
case b1 thus ?case by (blast intro!: one_star_app_congL)
next
case b2 thus ?case by (blast intro!: one_star_app_congR)
next
case b3 thus ?case by (blast intro!: one_star_lam_cong)
next
case b4 thus ?case by auto
qed
lemma trans_closure:
shows "(M1\<longrightarrow>\<^sub>1\<^sup>*M2) = (M1\<longrightarrow>\<^sub>\<beta>\<^sup>*M2)"
proof
assume "M1 \<longrightarrow>\<^sub>1\<^sup>* M2"
then show "M1\<longrightarrow>\<^sub>\<beta>\<^sup>*M2"
proof induct
case (os1 M1) thus "M1\<longrightarrow>\<^sub>\<beta>\<^sup>*M1" by simp
next
case (os2 M1 M2 M3)
have "M2\<longrightarrow>\<^sub>1M3" by fact
then have "M2\<longrightarrow>\<^sub>\<beta>\<^sup>*M3" by (rule one_beta_star)
moreover have "M1\<longrightarrow>\<^sub>\<beta>\<^sup>*M2" by fact
ultimately show "M1\<longrightarrow>\<^sub>\<beta>\<^sup>*M3" by (auto intro: beta_star_trans)
qed
next
assume "M1 \<longrightarrow>\<^sub>\<beta>\<^sup>* M2"
then show "M1\<longrightarrow>\<^sub>1\<^sup>*M2"
proof induct
case (bs1 M1) thus "M1\<longrightarrow>\<^sub>1\<^sup>*M1" by simp
next
case (bs2 M1 M2 M3)
have "M2\<longrightarrow>\<^sub>\<beta>M3" by fact
then have "M2\<longrightarrow>\<^sub>1\<^sup>*M3" by (rule beta_one_star)
moreover have "M1\<longrightarrow>\<^sub>1\<^sup>*M2" by fact
ultimately show "M1\<longrightarrow>\<^sub>1\<^sup>*M3" by (auto intro: one_star_trans)
qed
qed
lemma cr_one:
assumes a: "t\<longrightarrow>\<^sub>1\<^sup>*t1"
and b: "t\<longrightarrow>\<^sub>1t2"
shows "\<exists>t3. t1\<longrightarrow>\<^sub>1t3 \<and> t2\<longrightarrow>\<^sub>1\<^sup>*t3"
using a b
proof (induct arbitrary: t2)
case os1 thus ?case by force
next
case (os2 t s1 s2 t2)
have b: "s1 \<longrightarrow>\<^sub>1 s2" by fact
have h: "\<And>t2. t \<longrightarrow>\<^sub>1 t2 \<Longrightarrow> (\<exists>t3. s1 \<longrightarrow>\<^sub>1 t3 \<and> t2 \<longrightarrow>\<^sub>1\<^sup>* t3)" by fact
have c: "t \<longrightarrow>\<^sub>1 t2" by fact
show "\<exists>t3. s2 \<longrightarrow>\<^sub>1 t3 \<and> t2 \<longrightarrow>\<^sub>1\<^sup>* t3"
proof -
from c h have "\<exists>t3. s1 \<longrightarrow>\<^sub>1 t3 \<and> t2 \<longrightarrow>\<^sub>1\<^sup>* t3" by blast
then obtain t3 where c1: "s1 \<longrightarrow>\<^sub>1 t3" and c2: "t2 \<longrightarrow>\<^sub>1\<^sup>* t3" by blast
have "\<exists>t4. s2 \<longrightarrow>\<^sub>1 t4 \<and> t3 \<longrightarrow>\<^sub>1 t4" using b c1 by (blast intro: diamond)
thus ?thesis using c2 by (blast intro: one_star_trans)
qed
qed
lemma cr_one_star:
assumes a: "t\<longrightarrow>\<^sub>1\<^sup>*t2"
and b: "t\<longrightarrow>\<^sub>1\<^sup>*t1"
shows "\<exists>t3. t1\<longrightarrow>\<^sub>1\<^sup>*t3\<and>t2\<longrightarrow>\<^sub>1\<^sup>*t3"
using a b
proof (induct arbitrary: t1)
case (os1 t) then show ?case by force
next
case (os2 t s1 s2 t1)
have c: "t \<longrightarrow>\<^sub>1\<^sup>* s1" by fact
have c': "t \<longrightarrow>\<^sub>1\<^sup>* t1" by fact
have d: "s1 \<longrightarrow>\<^sub>1 s2" by fact
have "t \<longrightarrow>\<^sub>1\<^sup>* t1 \<Longrightarrow> (\<exists>t3. t1 \<longrightarrow>\<^sub>1\<^sup>* t3 \<and> s1 \<longrightarrow>\<^sub>1\<^sup>* t3)" by fact
then obtain t3 where f1: "t1 \<longrightarrow>\<^sub>1\<^sup>* t3"
and f2: "s1 \<longrightarrow>\<^sub>1\<^sup>* t3" using c' by blast
from cr_one d f2 have "\<exists>t4. t3\<longrightarrow>\<^sub>1t4 \<and> s2\<longrightarrow>\<^sub>1\<^sup>*t4" by blast
then obtain t4 where g1: "t3\<longrightarrow>\<^sub>1t4"
and g2: "s2\<longrightarrow>\<^sub>1\<^sup>*t4" by blast
have "t1\<longrightarrow>\<^sub>1\<^sup>*t4" using f1 g1 by (blast intro: one_star_trans)
thus ?case using g2 by blast
qed
lemma cr_beta_star:
assumes a1: "t\<longrightarrow>\<^sub>\<beta>\<^sup>*t1"
and a2: "t\<longrightarrow>\<^sub>\<beta>\<^sup>*t2"
shows "\<exists>t3. t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t3\<and>t2\<longrightarrow>\<^sub>\<beta>\<^sup>*t3"
proof -
from a1 have "t\<longrightarrow>\<^sub>1\<^sup>*t1" by (simp only: trans_closure)
moreover
from a2 have "t\<longrightarrow>\<^sub>1\<^sup>*t2" by (simp only: trans_closure)
ultimately have "\<exists>t3. t1\<longrightarrow>\<^sub>1\<^sup>*t3 \<and> t2\<longrightarrow>\<^sub>1\<^sup>*t3" by (blast intro: cr_one_star)
then obtain t3 where "t1\<longrightarrow>\<^sub>1\<^sup>*t3" and "t2\<longrightarrow>\<^sub>1\<^sup>*t3" by blast
hence "t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t3" and "t2\<longrightarrow>\<^sub>\<beta>\<^sup>*t3" by (simp_all only: trans_closure)
then show "\<exists>t3. t1\<longrightarrow>\<^sub>\<beta>\<^sup>*t3\<and>t2\<longrightarrow>\<^sub>\<beta>\<^sup>*t3" by blast
qed
end