set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
(* Title: HOL/Library/LaTeXsugar.thy
Author: Gerwin Klain, Tobias Nipkow, Norbert Schirmer
Copyright 2005 NICTA and TUM
*)
(*<*)
theory LaTeXsugar
imports Plain "~~/src/HOL/List"
begin
(* LOGIC *)
notation (latex output)
If ("(\<^raw:\textsf{>if\<^raw:}> (_)/ \<^raw:\textsf{>then\<^raw:}> (_)/ \<^raw:\textsf{>else\<^raw:}> (_))" 10)
syntax (latex output)
"_Let" :: "[letbinds, 'a] => 'a"
("(\<^raw:\textsf{>let\<^raw:}> (_)/ \<^raw:\textsf{>in\<^raw:}> (_))" 10)
"_case_syntax":: "['a, cases_syn] => 'b"
("(\<^raw:\textsf{>case\<^raw:}> _ \<^raw:\textsf{>of\<^raw:}>/ _)" 10)
(* should become standard syntax once x-symbols supports it *)
syntax (latex)
nexists :: "('a => bool) => bool" (binder "\<nexists>" 10)
translations
"\<nexists>x. P" <= "\<not>(\<exists>x. P)"
(* SETS *)
(* empty set *)
notation (latex)
"Set.empty" ("\<emptyset>")
(* insert *)
translations
"{x} \<union> A" <= "insert x A"
"{x,y}" <= "{x} \<union> {y}"
"{x,y} \<union> A" <= "{x} \<union> ({y} \<union> A)"
"{x}" <= "{x} \<union> \<emptyset>"
(* set comprehension *)
syntax (latex output)
"_Collect" :: "pttrn => bool => 'a set" ("(1{_ | _})")
translations
"_Collect p P" <= "{p. P}"
"_Collect p P" <= "{p|xs. P}"
(* LISTS *)
(* Cons *)
notation (latex)
Cons ("_\<cdot>/_" [66,65] 65)
(* length *)
notation (latex output)
length ("|_|")
(* nth *)
notation (latex output)
nth ("_\<^raw:\ensuremath{_{[\mathit{>_\<^raw:}]}}>" [1000,0] 1000)
(* DUMMY *)
consts DUMMY :: 'a ("\<^raw:\_>")
(* THEOREMS *)
syntax (Rule output)
"==>" :: "prop \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:\mbox{}\inferrule{\mbox{>_\<^raw:}}>\<^raw:{\mbox{>_\<^raw:}}>")
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:\mbox{}\inferrule{>_\<^raw:}>\<^raw:{\mbox{>_\<^raw:}}>")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms"
("\<^raw:\mbox{>_\<^raw:}\\>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}>")
syntax (Axiom output)
"Trueprop" :: "bool \<Rightarrow> prop"
("\<^raw:\mbox{}\inferrule{\mbox{}}{\mbox{>_\<^raw:}}>")
syntax (IfThen output)
"==>" :: "prop \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:{\normalsize{}>If\<^raw:\,}> _/ \<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:{\normalsize{}>If\<^raw:\,}> _ /\<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}> /\<^raw:{\normalsize \,>and\<^raw:\,}>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}>")
syntax (IfThenNoBox output)
"==>" :: "prop \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:{\normalsize{}>If\<^raw:\,}> _/ \<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
"_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
("\<^raw:{\normalsize{}>If\<^raw:\,}> _ /\<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
"_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("_ /\<^raw:{\normalsize \,>and\<^raw:\,}>/ _")
"_asm" :: "prop \<Rightarrow> asms" ("_")
end
(*>*)