(* Title: HOL/Orderings.thy Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson*)section \<open>Abstract orderings\<close>theory Orderingsimports HOLkeywords "print_orders" :: diagbeginML_file "~~/src/Provers/order.ML"ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *)subsection \<open>Abstract ordering\<close>locale ordering = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold>\<le>" 50) and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold><" 50) assumes strict_iff_order: "a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b" assumes refl: "a \<^bold>\<le> a" \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> and antisym: "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> a \<Longrightarrow> a = b" and trans: "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>\<le> c"beginlemma strict_implies_order: "a \<^bold>< b \<Longrightarrow> a \<^bold>\<le> b" by (simp add: strict_iff_order)lemma strict_implies_not_eq: "a \<^bold>< b \<Longrightarrow> a \<noteq> b" by (simp add: strict_iff_order)lemma not_eq_order_implies_strict: "a \<noteq> b \<Longrightarrow> a \<^bold>\<le> b \<Longrightarrow> a \<^bold>< b" by (simp add: strict_iff_order)lemma order_iff_strict: "a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" by (auto simp add: strict_iff_order refl)lemma irrefl: \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> "\<not> a \<^bold>< a" by (simp add: strict_iff_order)lemma asym: "a \<^bold>< b \<Longrightarrow> b \<^bold>< a \<Longrightarrow> False" by (auto simp add: strict_iff_order intro: antisym)lemma strict_trans1: "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" by (auto simp add: strict_iff_order intro: trans antisym)lemma strict_trans2: "a \<^bold>< b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>< c" by (auto simp add: strict_iff_order intro: trans antisym)lemma strict_trans: "a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" by (auto intro: strict_trans1 strict_implies_order)endtext \<open>Alternative introduction rule with bias towards strict order\<close>lemma ordering_strictI: fixes less_eq (infix "\<^bold>\<le>" 50) and less (infix "\<^bold><" 50) assumes less_eq_less: "\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" assumes asym: "\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a" assumes irrefl: "\<And>a. \<not> a \<^bold>< a" assumes trans: "\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" shows "ordering less_eq less"proof fix a b show "a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b" by (auto simp add: less_eq_less asym irrefl)next fix a show "a \<^bold>\<le> a" by (auto simp add: less_eq_less)next fix a b c assume "a \<^bold>\<le> b" and "b \<^bold>\<le> c" then show "a \<^bold>\<le> c" by (auto simp add: less_eq_less intro: trans)next fix a b assume "a \<^bold>\<le> b" and "b \<^bold>\<le> a" then show "a = b" by (auto simp add: less_eq_less asym)qedlemma ordering_dualI: fixes less_eq (infix "\<^bold>\<le>" 50) and less (infix "\<^bold><" 50) assumes "ordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)" shows "ordering less_eq less"proof - from assms interpret ordering "\<lambda>a b. b \<^bold>\<le> a" "\<lambda>a b. b \<^bold>< a" . show ?thesis by standard (auto simp: strict_iff_order refl intro: antisym trans)qedlocale ordering_top = ordering + fixes top :: "'a" ("\<^bold>\<top>") assumes extremum [simp]: "a \<^bold>\<le> \<^bold>\<top>"beginlemma extremum_uniqueI: "\<^bold>\<top> \<^bold>\<le> a \<Longrightarrow> a = \<^bold>\<top>" by (rule antisym) autolemma extremum_unique: "\<^bold>\<top> \<^bold>\<le> a \<longleftrightarrow> a = \<^bold>\<top>" by (auto intro: antisym)lemma extremum_strict [simp]: "\<not> (\<^bold>\<top> \<^bold>< a)" using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl)lemma not_eq_extremum: "a \<noteq> \<^bold>\<top> \<longleftrightarrow> a \<^bold>< \<^bold>\<top>" by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum)endsubsection \<open>Syntactic orders\<close>class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"beginnotation less_eq ("'(\<le>')") and less_eq ("(_/ \<le> _)" [51, 51] 50) and less ("'(<')") and less ("(_/ < _)" [51, 51] 50)abbreviation (input) greater_eq (infix "\<ge>" 50) where "x \<ge> y \<equiv> y \<le> x"abbreviation (input) greater (infix ">" 50) where "x > y \<equiv> y < x"notation (ASCII) less_eq ("'(<=')") and less_eq ("(_/ <= _)" [51, 51] 50)notation (input) greater_eq (infix ">=" 50)endsubsection \<open>Quasi orders\<close>class preorder = ord + assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" and order_refl [iff]: "x \<le> x" and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"begintext \<open>Reflexivity.\<close>lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" \<comment> \<open>This form is useful with the classical reasoner.\<close>by (erule ssubst) (rule order_refl)lemma less_irrefl [iff]: "\<not> x < x"by (simp add: less_le_not_le)lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y"by (simp add: less_le_not_le)text \<open>Asymmetry.\<close>lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)"by (simp add: less_le_not_le)lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P"by (drule less_not_sym, erule contrapos_np) simptext \<open>Transitivity.\<close>lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z"by (auto simp add: less_le_not_le intro: order_trans)lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z"by (auto simp add: less_le_not_le intro: order_trans)lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z"by (auto simp add: less_le_not_le intro: order_trans)text \<open>Useful for simplification, but too risky to include by default.\<close>lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True"by (blast elim: less_asym)lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True"by (blast elim: less_asym)text \<open>Transitivity rules for calculational reasoning\<close>lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P"by (rule less_asym)text \<open>Dual order\<close>lemma dual_preorder: "class.preorder (\<ge>) (>)" by standard (auto simp add: less_le_not_le intro: order_trans)endsubsection \<open>Partial orders\<close>class order = preorder + assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"beginlemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" by (auto simp add: less_le_not_le intro: antisym)sublocale order: ordering less_eq less + dual_order: ordering greater_eq greaterproof - interpret ordering less_eq less by standard (auto intro: antisym order_trans simp add: less_le) show "ordering less_eq less" by (fact ordering_axioms) then show "ordering greater_eq greater" by (rule ordering_dualI)qedtext \<open>Reflexivity.\<close>lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" \<comment> \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close>by (fact order.order_iff_strict)lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y"by (simp add: less_le)text \<open>Useful for simplification, but too risky to include by default.\<close>lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False"by autolemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False"by autotext \<open>Transitivity rules for calculational reasoning\<close>lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"by (fact order.not_eq_order_implies_strict)lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b"by (rule order.not_eq_order_implies_strict)text \<open>Asymmetry.\<close>lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x"by (blast intro: antisym)lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"by (blast intro: antisym)lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"by (fact order.strict_implies_not_eq)text \<open>Least value operator\<close>definition (in ord) Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))"lemma Least_equality: assumes "P x" and "\<And>y. P y \<Longrightarrow> x \<le> y" shows "Least P = x"unfolding Least_def by (rule the_equality) (blast intro: assms antisym)+lemma LeastI2_order: assumes "P x" and "\<And>y. P y \<Longrightarrow> x \<le> y" and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" shows "Q (Least P)"unfolding Least_def by (rule theI2) (blast intro: assms antisym)+text \<open>Greatest value operator\<close>definition Greatest :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREATEST " 10) where"Greatest P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<ge> y))"lemma GreatestI2_order: "\<lbrakk> P x; \<And>y. P y \<Longrightarrow> x \<ge> y; \<And>x. \<lbrakk> P x; \<forall>y. P y \<longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Q x \<rbrakk> \<Longrightarrow> Q (Greatest P)"unfolding Greatest_defby (rule theI2) (blast intro: antisym)+lemma Greatest_equality: "\<lbrakk> P x; \<And>y. P y \<Longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Greatest P = x"unfolding Greatest_defby (rule the_equality) (blast intro: antisym)+endlemma ordering_orderI: fixes less_eq (infix "\<^bold>\<le>" 50) and less (infix "\<^bold><" 50) assumes "ordering less_eq less" shows "class.order less_eq less"proof - from assms interpret ordering less_eq less . show ?thesis by standard (auto intro: antisym trans simp add: refl strict_iff_order)qedlemma order_strictI: fixes less (infix "\<sqsubset>" 50) and less_eq (infix "\<sqsubseteq>" 50) assumes "\<And>a b. a \<sqsubseteq> b \<longleftrightarrow> a \<sqsubset> b \<or> a = b" assumes "\<And>a b. a \<sqsubset> b \<Longrightarrow> \<not> b \<sqsubset> a" assumes "\<And>a. \<not> a \<sqsubset> a" assumes "\<And>a b c. a \<sqsubset> b \<Longrightarrow> b \<sqsubset> c \<Longrightarrow> a \<sqsubset> c" shows "class.order less_eq less" by (rule ordering_orderI) (rule ordering_strictI, (fact assms)+)context orderbegintext \<open>Dual order\<close>lemma dual_order: "class.order (\<ge>) (>)" using dual_order.ordering_axioms by (rule ordering_orderI)endsubsection \<open>Linear (total) orders\<close>class linorder = order + assumes linear: "x \<le> y \<or> y \<le> x"beginlemma less_linear: "x < y \<or> x = y \<or> y < x"unfolding less_le using less_le linear by blastlemma le_less_linear: "x \<le> y \<or> y < x"by (simp add: le_less less_linear)lemma le_cases [case_names le ge]: "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P"using linear by blastlemma (in linorder) le_cases3: "\<lbrakk>\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> x; x \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>x \<le> z; z \<le> y\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> x; x \<le> y\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"by (blast intro: le_cases)lemma linorder_cases [case_names less equal greater]: "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P"using less_linear by blastlemma linorder_wlog[case_names le sym]: "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" by (cases rule: le_cases[of a b]) blast+lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x"apply (simp add: less_le)using linear apply (blast intro: antisym)donelemma not_less_iff_gr_or_eq: "\<not>(x < y) \<longleftrightarrow> (x > y \<or> x = y)"apply(simp add:not_less le_less)apply blastdonelemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x"apply (simp add: less_le)using linear apply (blast intro: antisym)donelemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x"by (cut_tac x = x and y = y in less_linear, auto)lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R"by (simp add: neq_iff) blastlemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"by (blast intro: antisym dest: not_less [THEN iffD1])lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"by (blast intro: antisym dest: not_less [THEN iffD1])lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"by (blast intro: antisym dest: not_less [THEN iffD1])lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x"unfolding not_less .lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y"unfolding not_less .lemma not_le_imp_less: "\<not> y \<le> x \<Longrightarrow> x < y"unfolding not_le .lemma linorder_less_wlog[case_names less refl sym]: "\<lbrakk>\<And>a b. a < b \<Longrightarrow> P a b; \<And>a. P a a; \<And>a b. P b a \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b" using antisym_conv3 by blasttext \<open>Dual order\<close>lemma dual_linorder: "class.linorder (\<ge>) (>)"by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear)endtext \<open>Alternative introduction rule with bias towards strict order\<close>lemma linorder_strictI: fixes less_eq (infix "\<^bold>\<le>" 50) and less (infix "\<^bold><" 50) assumes "class.order less_eq less" assumes trichotomy: "\<And>a b. a \<^bold>< b \<or> a = b \<or> b \<^bold>< a" shows "class.linorder less_eq less"proof - interpret order less_eq less by (fact \<open>class.order less_eq less\<close>) show ?thesis proof fix a b show "a \<^bold>\<le> b \<or> b \<^bold>\<le> a" using trichotomy by (auto simp add: le_less) qedqedsubsection \<open>Reasoning tools setup\<close>ML \<open>signature ORDERS =sig val print_structures: Proof.context -> unit val order_tac: Proof.context -> thm list -> int -> tactic val add_struct: string * term list -> string -> attribute val del_struct: string * term list -> attributeend;structure Orders: ORDERS =struct(* context data *)fun struct_eq ((s1: string, ts1), (s2, ts2)) = s1 = s2 andalso eq_list (op aconv) (ts1, ts2);structure Data = Generic_Data( type T = ((string * term list) * Order_Tac.less_arith) list; (* Order structures: identifier of the structure, list of operations and record of theorems needed to set up the transitivity reasoner, identifier and operations identify the structure uniquely. *) val empty = []; val extend = I; fun merge data = AList.join struct_eq (K fst) data;);fun print_structures ctxt = let val structs = Data.get (Context.Proof ctxt); fun pretty_term t = Pretty.block [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; fun pretty_struct ((s, ts), _) = Pretty.block [Pretty.str s, Pretty.str ":", Pretty.brk 1, Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))]; in Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs)) end;val _ = Outer_Syntax.command @{command_keyword print_orders} "print order structures available to transitivity reasoner" (Scan.succeed (Toplevel.keep (print_structures o Toplevel.context_of)));(* tactics *)fun struct_tac ((s, ops), thms) ctxt facts = let val [eq, le, less] = ops; fun decomp thy (@{const Trueprop} $ t) = let fun excluded t = (* exclude numeric types: linear arithmetic subsumes transitivity *) let val T = type_of t in T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT end; fun rel (bin_op $ t1 $ t2) = if excluded t1 then NONE else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) else NONE | rel _ = NONE; fun dec (Const (@{const_name Not}, _) $ t) = (case rel t of NONE => NONE | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | dec x = rel x; in dec t end | decomp _ _ = NONE; in (case s of "order" => Order_Tac.partial_tac decomp thms ctxt facts | "linorder" => Order_Tac.linear_tac decomp thms ctxt facts | _ => error ("Unknown order kind " ^ quote s ^ " encountered in transitivity reasoner")) endfun order_tac ctxt facts = FIRST' (map (fn s => CHANGED o struct_tac s ctxt facts) (Data.get (Context.Proof ctxt)));(* attributes *)fun add_struct s tag = Thm.declaration_attribute (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm)));fun del_struct s = Thm.declaration_attribute (fn _ => Data.map (AList.delete struct_eq s));end;\<close>attribute_setup order = \<open> Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- Scan.repeat Args.term >> (fn ((SOME tag, n), ts) => Orders.add_struct (n, ts) tag | ((NONE, n), ts) => Orders.del_struct (n, ts))\<close> "theorems controlling transitivity reasoner"method_setup order = \<open> Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt []))\<close> "transitivity reasoner"text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close>context orderbegin(* The type constraint on @{term (=}) below is necessary since the operation is not a parameter of the locale. *)declare less_irrefl [THEN notE, order add less_reflE: order "(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "(<=)" "(<)"]declare order_refl [order add le_refl: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_imp_le [order add less_imp_le: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare antisym [order add eqI: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare eq_refl [order add eqD1: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare sym [THEN eq_refl, order add eqD2: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_trans [order add less_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_le_trans [order add less_le_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare le_less_trans [order add le_less_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare order_trans [order add le_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare le_neq_trans [order add le_neq_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare neq_le_trans [order add neq_le_trans: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_imp_neq [order add less_imp_neq: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_sym [order add not_sym: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]endcontext linorderbegindeclare [[order del: order "(=) :: 'a => 'a => bool" "(<=)" "(<)"]]declare less_irrefl [THEN notE, order add less_reflE: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare order_refl [order add le_refl: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_imp_le [order add less_imp_le: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_less [THEN iffD2, order add not_lessI: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_le [THEN iffD2, order add not_leI: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_less [THEN iffD1, order add not_lessD: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_le [THEN iffD1, order add not_leD: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare antisym [order add eqI: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare eq_refl [order add eqD1: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare sym [THEN eq_refl, order add eqD2: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_trans [order add less_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_le_trans [order add less_le_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare le_less_trans [order add le_less_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare order_trans [order add le_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare le_neq_trans [order add le_neq_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare neq_le_trans [order add neq_le_trans: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare less_imp_neq [order add less_imp_neq: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]declare not_sym [order add not_sym: linorder "(=) :: 'a => 'a => bool" "(<=)" "(<)"]endsetup \<open> map_theory_simpset (fn ctxt0 => ctxt0 addSolver mk_solver "Transitivity" (fn ctxt => Orders.order_tac ctxt (Simplifier.prems_of ctxt))) (*Adding the transitivity reasoners also as safe solvers showed a slight speed up, but the reasoning strength appears to be not higher (at least no breaking of additional proofs in the entire HOL distribution, as of 5 March 2004, was observed).*)\<close>ML \<open>local fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *)infun antisym_le_simproc ctxt ct = (case Thm.term_of ct of (le as Const (_, T)) $ r $ s => (let val prems = Simplifier.prems_of ctxt; val less = Const (@{const_name less}, T); val t = HOLogic.mk_Trueprop(le $ s $ r); in (case find_first (prp t) prems of NONE => let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in (case find_first (prp t) prems of NONE => NONE | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))) end | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv}))) end handle THM _ => NONE) | _ => NONE);fun antisym_less_simproc ctxt ct = (case Thm.term_of ct of NotC $ ((less as Const(_,T)) $ r $ s) => (let val prems = Simplifier.prems_of ctxt; val le = Const (@{const_name less_eq}, T); val t = HOLogic.mk_Trueprop(le $ r $ s); in (case find_first (prp t) prems of NONE => let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in (case find_first (prp t) prems of NONE => NONE | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))) end | SOME thm => SOME (mk_meta_eq (thm RS @{thm linorder_class.antisym_conv2}))) end handle THM _ => NONE) | _ => NONE);end;\<close>simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"subsection \<open>Bounded quantifiers\<close>syntax (ASCII) "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) "_All_neq" :: "[idt, 'a, bool] => bool" ("(3ALL _~=_./ _)" [0, 0, 10] 10) "_Ex_neq" :: "[idt, 'a, bool] => bool" ("(3EX _~=_./ _)" [0, 0, 10] 10)syntax "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) "_All_neq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<noteq>_./ _)" [0, 0, 10] 10) "_Ex_neq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<noteq>_./ _)" [0, 0, 10] 10)syntax (input) "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) "_All_neq" :: "[idt, 'a, bool] => bool" ("(3! _~=_./ _)" [0, 0, 10] 10) "_Ex_neq" :: "[idt, 'a, bool] => bool" ("(3? _~=_./ _)" [0, 0, 10] 10)translations "\<forall>x<y. P" \<rightharpoonup> "\<forall>x. x < y \<longrightarrow> P" "\<exists>x<y. P" \<rightharpoonup> "\<exists>x. x < y \<and> P" "\<forall>x\<le>y. P" \<rightharpoonup> "\<forall>x. x \<le> y \<longrightarrow> P" "\<exists>x\<le>y. P" \<rightharpoonup> "\<exists>x. x \<le> y \<and> P" "\<forall>x>y. P" \<rightharpoonup> "\<forall>x. x > y \<longrightarrow> P" "\<exists>x>y. P" \<rightharpoonup> "\<exists>x. x > y \<and> P" "\<forall>x\<ge>y. P" \<rightharpoonup> "\<forall>x. x \<ge> y \<longrightarrow> P" "\<exists>x\<ge>y. P" \<rightharpoonup> "\<exists>x. x \<ge> y \<and> P" "\<forall>x\<noteq>y. P" \<rightharpoonup> "\<forall>x. x \<noteq> y \<longrightarrow> P" "\<exists>x\<noteq>y. P" \<rightharpoonup> "\<exists>x. x \<noteq> y \<and> P"print_translation \<open>let val All_binder = Mixfix.binder_name @{const_syntax All}; val Ex_binder = Mixfix.binder_name @{const_syntax Ex}; val impl = @{const_syntax HOL.implies}; val conj = @{const_syntax HOL.conj}; val less = @{const_syntax less}; val less_eq = @{const_syntax less_eq}; val trans = [((All_binder, impl, less), (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})), ((All_binder, impl, less_eq), (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})), ((Ex_binder, conj, less), (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})), ((Ex_binder, conj, less_eq), (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))]; fun matches_bound v t = (case t of Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v' | _ => false); fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; fun tr' q = (q, fn _ => (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => (case AList.lookup (=) trans (q, c, d) of NONE => raise Match | SOME (l, g) => if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P else raise Match) | _ => raise Match));in [tr' All_binder, tr' Ex_binder] end\<close>subsection \<open>Transitivity reasoning\<close>context ordbeginlemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" by (rule subst)lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" by (rule ssubst)lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" by (rule subst)lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" by (rule ssubst)endlemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> (!!x y. x < y ==> f x < f y) ==> f a < c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b < c" finally (less_trans) show ?thesis .qedlemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < f b" also assume "b < c" hence "f b < f c" by (rule r) finally (less_trans) show ?thesis .qedlemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> (!!x y. x <= y ==> f x <= f y) ==> f a < c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b < c" finally (le_less_trans) show ?thesis .qedlemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a <= f b" also assume "b < c" hence "f b < f c" by (rule r) finally (le_less_trans) show ?thesis .qedlemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> (!!x y. x < y ==> f x < f y) ==> f a < c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b <= c" finally (less_le_trans) show ?thesis .qedlemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a < f c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a < f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (less_le_trans) show ?thesis .qedlemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a <= f c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (order_trans) show ?thesis .qedlemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> (!!x y. x <= y ==> f x <= f y) ==> f a <= c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b <= c" finally (order_trans) show ?thesis .qedlemma ord_le_eq_subst: "a <= b ==> f b = c ==> (!!x y. x <= y ==> f x <= f y) ==> f a <= c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a <= b" hence "f a <= f b" by (rule r) also assume "f b = c" finally (ord_le_eq_trans) show ?thesis .qedlemma ord_eq_le_subst: "a = f b ==> b <= c ==> (!!x y. x <= y ==> f x <= f y) ==> a <= f c"proof - assume r: "!!x y. x <= y ==> f x <= f y" assume "a = f b" also assume "b <= c" hence "f b <= f c" by (rule r) finally (ord_eq_le_trans) show ?thesis .qedlemma ord_less_eq_subst: "a < b ==> f b = c ==> (!!x y. x < y ==> f x < f y) ==> f a < c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a < b" hence "f a < f b" by (rule r) also assume "f b = c" finally (ord_less_eq_trans) show ?thesis .qedlemma ord_eq_less_subst: "a = f b ==> b < c ==> (!!x y. x < y ==> f x < f y) ==> a < f c"proof - assume r: "!!x y. x < y ==> f x < f y" assume "a = f b" also assume "b < c" hence "f b < f c" by (rule r) finally (ord_eq_less_trans) show ?thesis .qedtext \<open> Note that this list of rules is in reverse order of priorities.\<close>lemmas [trans] = order_less_subst2 order_less_subst1 order_le_less_subst2 order_le_less_subst1 order_less_le_subst2 order_less_le_subst1 order_subst2 order_subst1 ord_le_eq_subst ord_eq_le_subst ord_less_eq_subst ord_eq_less_subst forw_subst back_subst rev_mp mplemmas (in order) [trans] = neq_le_trans le_neq_translemmas (in preorder) [trans] = less_trans less_asym' le_less_trans less_le_trans order_translemmas (in order) [trans] = antisymlemmas (in ord) [trans] = ord_le_eq_trans ord_eq_le_trans ord_less_eq_trans ord_eq_less_translemmas [trans] = translemmas order_trans_rules = order_less_subst2 order_less_subst1 order_le_less_subst2 order_le_less_subst1 order_less_le_subst2 order_less_le_subst1 order_subst2 order_subst1 ord_le_eq_subst ord_eq_le_subst ord_less_eq_subst ord_eq_less_subst forw_subst back_subst rev_mp mp neq_le_trans le_neq_trans less_trans less_asym' le_less_trans less_le_trans order_trans antisym ord_le_eq_trans ord_eq_le_trans ord_less_eq_trans ord_eq_less_trans transtext \<open>These support proving chains of decreasing inequalities a >= b >= c ... in Isar proofs.\<close>lemma xt1 [no_atp]: "a = b \<Longrightarrow> b > c \<Longrightarrow> a > c" "a > b \<Longrightarrow> b = c \<Longrightarrow> a > c" "a = b \<Longrightarrow> b \<ge> c \<Longrightarrow> a \<ge> c" "a \<ge> b \<Longrightarrow> b = c \<Longrightarrow> a \<ge> c" "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> x \<Longrightarrow> x = y" "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> z \<Longrightarrow> x \<ge> z" "(x::'a::order) > y \<Longrightarrow> y \<ge> z \<Longrightarrow> x > z" "(x::'a::order) \<ge> y \<Longrightarrow> y > z \<Longrightarrow> x > z" "(a::'a::order) > b \<Longrightarrow> b > a \<Longrightarrow> P" "(x::'a::order) > y \<Longrightarrow> y > z \<Longrightarrow> x > z" "(a::'a::order) \<ge> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a > b" "(a::'a::order) \<noteq> b \<Longrightarrow> a \<ge> b \<Longrightarrow> a > b" "a = f b \<Longrightarrow> b > c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> a > f c" "a > b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> f a > c" "a = f b \<Longrightarrow> b \<ge> c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> a \<ge> f c" "a \<ge> b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> f a \<ge> c" by autolemma xt2 [no_atp]: "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"by (subgoal_tac "f b >= f c", force, force)lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> (!!x y. x >= y ==> f x >= f y) ==> f a >= c"by (subgoal_tac "f a >= f b", force, force)lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a > f c"by (subgoal_tac "f b >= f c", force, force)lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> (!!x y. x > y ==> f x > f y) ==> f a > c"by (subgoal_tac "f a > f b", force, force)lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"by (subgoal_tac "f b > f c", force, force)lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> (!!x y. x >= y ==> f x >= f y) ==> f a > c"by (subgoal_tac "f a >= f b", force, force)lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"by (subgoal_tac "f b > f c", force, force)lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"by (subgoal_tac "f a > f b", force, force)lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9(* Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands for the wrong thing in an Isar proof. The extra transitivity rules can be used as follows:lemma "(a::'a::order) > z"proof - have "a >= b" (is "_ >= ?rhs") sorry also have "?rhs >= c" (is "_ >= ?rhs") sorry also (xtrans) have "?rhs = d" (is "_ = ?rhs") sorry also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") sorry also (xtrans) have "?rhs > f" (is "_ > ?rhs") sorry also (xtrans) have "?rhs > z" sorry finally (xtrans) show ?thesis .qed Alternatively, one can use "declare xtrans [trans]" and then leave out the "(xtrans)" above.*)subsection \<open>Monotonicity\<close>context orderbegindefinition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"lemma monoI [intro?]: fixes f :: "'a \<Rightarrow> 'b::order" shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" unfolding mono_def by iproverlemma monoD [dest?]: fixes f :: "'a \<Rightarrow> 'b::order" shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" unfolding mono_def by iproverlemma monoE: fixes f :: "'a \<Rightarrow> 'b::order" assumes "mono f" assumes "x \<le> y" obtains "f x \<le> f y"proof from assms show "f x \<le> f y" by (simp add: mono_def)qeddefinition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)"lemma antimonoI [intro?]: fixes f :: "'a \<Rightarrow> 'b::order" shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f" unfolding antimono_def by iproverlemma antimonoD [dest?]: fixes f :: "'a \<Rightarrow> 'b::order" shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y" unfolding antimono_def by iproverlemma antimonoE: fixes f :: "'a \<Rightarrow> 'b::order" assumes "antimono f" assumes "x \<le> y" obtains "f x \<ge> f y"proof from assms show "f x \<ge> f y" by (simp add: antimono_def)qeddefinition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"lemma strict_monoI [intro?]: assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" shows "strict_mono f" using assms unfolding strict_mono_def by autolemma strict_monoD [dest?]: "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" unfolding strict_mono_def by autolemma strict_mono_mono [dest?]: assumes "strict_mono f" shows "mono f"proof (rule monoI) fix x y assume "x \<le> y" show "f x \<le> f y" proof (cases "x = y") case True then show ?thesis by simp next case False with \<open>x \<le> y\<close> have "x < y" by simp with assms strict_monoD have "f x < f y" by auto then show ?thesis by simp qedqedendcontext linorderbeginlemma mono_invE: fixes f :: "'a \<Rightarrow> 'b::order" assumes "mono f" assumes "f x < f y" obtains "x \<le> y"proof show "x \<le> y" proof (rule ccontr) assume "\<not> x \<le> y" then have "y \<le> x" by simp with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) with \<open>f x < f y\<close> show False by simp qedqedlemma mono_strict_invE: fixes f :: "'a \<Rightarrow> 'b::order" assumes "mono f" assumes "f x < f y" obtains "x < y"proof show "x < y" proof (rule ccontr) assume "\<not> x < y" then have "y \<le> x" by simp with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) with \<open>f x < f y\<close> show False by simp qedqedlemma strict_mono_eq: assumes "strict_mono f" shows "f x = f y \<longleftrightarrow> x = y"proof assume "f x = f y" show "x = y" proof (cases x y rule: linorder_cases) case less with assms strict_monoD have "f x < f y" by auto with \<open>f x = f y\<close> show ?thesis by simp next case equal then show ?thesis . next case greater with assms strict_monoD have "f y < f x" by auto with \<open>f x = f y\<close> show ?thesis by simp qedqed simplemma strict_mono_less_eq: assumes "strict_mono f" shows "f x \<le> f y \<longleftrightarrow> x \<le> y"proof assume "x \<le> y" with assms strict_mono_mono monoD show "f x \<le> f y" by autonext assume "f x \<le> f y" show "x \<le> y" proof (rule ccontr) assume "\<not> x \<le> y" then have "y < x" by simp with assms strict_monoD have "f y < f x" by auto with \<open>f x \<le> f y\<close> show False by simp qedqedlemma strict_mono_less: assumes "strict_mono f" shows "f x < f y \<longleftrightarrow> x < y" using assms by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)endsubsection \<open>min and max -- fundamental\<close>definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where "min a b = (if a \<le> b then a else b)"definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where "max a b = (if a \<le> b then b else a)"lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" by (simp add: min_def)lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" by (simp add: max_def)lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" by (simp add:min_def)lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" by (simp add: max_def)lemma max_min_same [simp]: fixes x y :: "'a :: linorder" shows "max x (min x y) = x" "max (min x y) x = x" "max (min x y) y = y" "max y (min x y) = y"by(auto simp add: max_def min_def)subsection \<open>(Unique) top and bottom elements\<close>class bot = fixes bot :: 'a ("\<bottom>")class order_bot = order + bot + assumes bot_least: "\<bottom> \<le> a"beginsublocale bot: ordering_top greater_eq greater bot by standard (fact bot_least)lemma le_bot: "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" by (fact bot.extremum_uniqueI)lemma bot_unique: "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" by (fact bot.extremum_unique)lemma not_less_bot: "\<not> a < \<bottom>" by (fact bot.extremum_strict)lemma bot_less: "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" by (fact bot.not_eq_extremum)lemma max_bot[simp]: "max bot x = x"by(simp add: max_def bot_unique)lemma max_bot2[simp]: "max x bot = x"by(simp add: max_def bot_unique)lemma min_bot[simp]: "min bot x = bot"by(simp add: min_def bot_unique)lemma min_bot2[simp]: "min x bot = bot"by(simp add: min_def bot_unique)endclass top = fixes top :: 'a ("\<top>")class order_top = order + top + assumes top_greatest: "a \<le> \<top>"beginsublocale top: ordering_top less_eq less top by standard (fact top_greatest)lemma top_le: "\<top> \<le> a \<Longrightarrow> a = \<top>" by (fact top.extremum_uniqueI)lemma top_unique: "\<top> \<le> a \<longleftrightarrow> a = \<top>" by (fact top.extremum_unique)lemma not_top_less: "\<not> \<top> < a" by (fact top.extremum_strict)lemma less_top: "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" by (fact top.not_eq_extremum)lemma max_top[simp]: "max top x = top"by(simp add: max_def top_unique)lemma max_top2[simp]: "max x top = top"by(simp add: max_def top_unique)lemma min_top[simp]: "min top x = x"by(simp add: min_def top_unique)lemma min_top2[simp]: "min x top = x"by(simp add: min_def top_unique)endsubsection \<open>Dense orders\<close>class dense_order = order + assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)"class dense_linorder = linorder + dense_orderbeginlemma dense_le: fixes y z :: 'a assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" shows "y \<le> z"proof (rule ccontr) assume "\<not> ?thesis" hence "z < y" by simp from dense[OF this] obtain x where "x < y" and "z < x" by safe moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . ultimately show False by autoqedlemma dense_le_bounded: fixes x y z :: 'a assumes "x < y" assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" shows "y \<le> z"proof (rule dense_le) fix w assume "w < y" from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe from linear[of u w] show "w \<le> z" proof (rule disjE) assume "u \<le> w" from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> show "w \<le> z" by (rule *) next assume "w \<le> u" from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] show "w \<le> z" by (rule order_trans) qedqedlemma dense_ge: fixes y z :: 'a assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" shows "y \<le> z"proof (rule ccontr) assume "\<not> ?thesis" hence "z < y" by simp from dense[OF this] obtain x where "x < y" and "z < x" by safe moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . ultimately show False by autoqedlemma dense_ge_bounded: fixes x y z :: 'a assumes "z < x" assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" shows "y \<le> z"proof (rule dense_ge) fix w assume "z < w" from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe from linear[of u w] show "y \<le> w" proof (rule disjE) assume "w \<le> u" from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] show "y \<le> w" by (rule *) next assume "u \<le> w" from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> show "y \<le> w" by (rule order_trans) qedqedendclass no_top = order + assumes gt_ex: "\<exists>y. x < y"class no_bot = order + assumes lt_ex: "\<exists>y. y < x"class unbounded_dense_linorder = dense_linorder + no_top + no_botsubsection \<open>Wellorders\<close>class wellorder = linorder + assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a"beginlemma wellorder_Least_lemma: fixes k :: 'a assumes "P k" shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k"proof - have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" using assms proof (induct k rule: less_induct) case (less x) then have "P x" by simp show ?case proof (rule classical) assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" have "\<And>y. P y \<Longrightarrow> x \<le> y" proof (rule classical) fix y assume "P y" and "\<not> x \<le> y" with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" by (auto simp add: not_le) with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" by auto then show "x \<le> y" by auto qed with \<open>P x\<close> have Least: "(LEAST a. P a) = x" by (rule Least_equality) with \<open>P x\<close> show ?thesis by simp qed qed then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by autoqed\<comment> \<open>The following 3 lemmas are due to Brian Huffman\<close>lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" by (erule exE) (erule LeastI)lemma LeastI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" by (blast intro: LeastI)lemma LeastI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" by (blast intro: LeastI_ex)lemma LeastI2_wellorder: assumes "P a" and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" shows "Q (Least P)"proof (rule LeastI2_order) show "P (Least P)" using \<open>P a\<close> by (rule LeastI)next fix y assume "P y" thus "Least P \<le> y" by (rule Least_le)next fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2))qedlemma LeastI2_wellorder_ex: assumes "\<exists>x. P x" and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" shows "Q (Least P)"using assms by clarify (blast intro!: LeastI2_wellorder)lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k"apply (simp add: not_le [symmetric])apply (erule contrapos_nn)apply (erule Least_le)donelemma exists_least_iff: "(\<exists>n. P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" (is "?lhs \<longleftrightarrow> ?rhs")proof assume ?rhs thus ?lhs by blastnext assume H: ?lhs then obtain n where n: "P n" by blast let ?x = "Least P" { fix m assume m: "m < ?x" from not_less_Least[OF m] have "\<not> P m" . } with LeastI_ex[OF H] show ?rhs by blastqedendsubsection \<open>Order on @{typ bool}\<close>instantiation bool :: "{order_bot, order_top, linorder}"begindefinition le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q"definition [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q"definition [simp]: "\<bottom> \<longleftrightarrow> False"definition [simp]: "\<top> \<longleftrightarrow> True"instance proofqed autoendlemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" by simplemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" by simplemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" by simplemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" by simplemma bot_boolE: "\<bottom> \<Longrightarrow> P" by simplemma top_boolI: \<top> by simplemma [code]: "False \<le> b \<longleftrightarrow> True" "True \<le> b \<longleftrightarrow> b" "False < b \<longleftrightarrow> b" "True < b \<longleftrightarrow> False" by simp_allsubsection \<open>Order on @{typ "_ \<Rightarrow> _"}\<close>instantiation "fun" :: (type, ord) ordbegindefinition le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)"definition "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)"instance ..endinstance "fun" :: (type, preorder) preorder proofqed (auto simp add: le_fun_def less_fun_def intro: order_trans antisym)instance "fun" :: (type, order) order proofqed (auto simp add: le_fun_def intro: antisym)instantiation "fun" :: (type, bot) botbegindefinition "\<bottom> = (\<lambda>x. \<bottom>)"instance ..endinstantiation "fun" :: (type, order_bot) order_botbeginlemma bot_apply [simp, code]: "\<bottom> x = \<bottom>" by (simp add: bot_fun_def)instance proofqed (simp add: le_fun_def)endinstantiation "fun" :: (type, top) topbegindefinition [no_atp]: "\<top> = (\<lambda>x. \<top>)"instance ..endinstantiation "fun" :: (type, order_top) order_topbeginlemma top_apply [simp, code]: "\<top> x = \<top>" by (simp add: top_fun_def)instance proofqed (simp add: le_fun_def)endlemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" unfolding le_fun_def by simplemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" unfolding le_fun_def by simplemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" by (rule le_funE)lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))" unfolding mono_def le_fun_def by autosubsection \<open>Order on unary and binary predicates\<close>lemma predicate1I: assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" shows "P \<le> Q" apply (rule le_funI) apply (rule le_boolI) apply (rule PQ) apply assumption donelemma predicate1D: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" apply (erule le_funE) apply (erule le_boolE) apply assumption+ donelemma rev_predicate1D: "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" by (rule predicate1D)lemma predicate2I: assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" shows "P \<le> Q" apply (rule le_funI)+ apply (rule le_boolI) apply (rule PQ) apply assumption donelemma predicate2D: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" apply (erule le_funE)+ apply (erule le_boolE) apply assumption+ donelemma rev_predicate2D: "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" by (rule predicate2D)lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" by (simp add: bot_fun_def)lemma bot2E: "\<bottom> x y \<Longrightarrow> P" by (simp add: bot_fun_def)lemma top1I: "\<top> x" by (simp add: top_fun_def)lemma top2I: "\<top> x y" by (simp add: top_fun_def)subsection \<open>Name duplicates\<close>lemmas order_eq_refl = preorder_class.eq_refllemmas order_less_irrefl = preorder_class.less_irrefllemmas order_less_imp_le = preorder_class.less_imp_lelemmas order_less_not_sym = preorder_class.less_not_symlemmas order_less_asym = preorder_class.less_asymlemmas order_less_trans = preorder_class.less_translemmas order_le_less_trans = preorder_class.le_less_translemmas order_less_le_trans = preorder_class.less_le_translemmas order_less_imp_not_less = preorder_class.less_imp_not_lesslemmas order_less_imp_triv = preorder_class.less_imp_trivlemmas order_less_asym' = preorder_class.less_asym'lemmas order_less_le = order_class.less_lelemmas order_le_less = order_class.le_lesslemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eqlemmas order_less_imp_not_eq = order_class.less_imp_not_eqlemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2lemmas order_neq_le_trans = order_class.neq_le_translemmas order_le_neq_trans = order_class.le_neq_translemmas order_antisym = order_class.antisymlemmas order_eq_iff = order_class.eq_ifflemmas order_antisym_conv = order_class.antisym_convlemmas linorder_linear = linorder_class.linearlemmas linorder_less_linear = linorder_class.less_linearlemmas linorder_le_less_linear = linorder_class.le_less_linearlemmas linorder_le_cases = linorder_class.le_caseslemmas linorder_not_less = linorder_class.not_lesslemmas linorder_not_le = linorder_class.not_lelemmas linorder_neq_iff = linorder_class.neq_ifflemmas linorder_neqE = linorder_class.neqElemmas linorder_antisym_conv1 = linorder_class.antisym_conv1lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3end