(* Title: Tools/intuitionistic.ML
Author: Stefan Berghofer, TU Muenchen
Simple intuitionistic proof search.
*)
signature INTUITIONISTIC =
sig
val prover_tac: Proof.context -> int option -> int -> tactic
val method_setup: binding -> theory -> theory
end;
structure Intuitionistic: INTUITIONISTIC =
struct
(* main tactic *)
local
val remdups_tac = SUBGOAL (fn (g, i) =>
let val prems = Logic.strip_assums_hyp g in
REPEAT_DETERM_N (length prems - length (distinct op aconv prems))
(Tactic.ematch_tac [Drule.remdups_rl] i THEN Tactic.eq_assume_tac i)
end);
fun REMDUPS tac = tac THEN_ALL_NEW remdups_tac;
val bires_tac = Tactic.biresolution_from_nets_tac Context_Rules.orderlist;
fun safe_step_tac ctxt =
Context_Rules.Swrap ctxt
(eq_assume_tac ORELSE'
bires_tac true (Context_Rules.netpair_bang ctxt));
fun unsafe_step_tac ctxt =
Context_Rules.wrap ctxt
(assume_tac APPEND'
bires_tac false (Context_Rules.netpair_bang ctxt) APPEND'
bires_tac false (Context_Rules.netpair ctxt));
fun step_tac ctxt i =
REPEAT_DETERM1 (REMDUPS (safe_step_tac ctxt) i) ORELSE
REMDUPS (unsafe_step_tac ctxt) i;
fun intprover_tac ctxt gs d lim = SUBGOAL (fn (g, i) => if d > lim then no_tac else
let
val ps = Logic.strip_assums_hyp g;
val c = Logic.strip_assums_concl g;
in
if member (fn ((ps1, c1), (ps2, c2)) =>
c1 aconv c2 andalso
length ps1 = length ps2 andalso
eq_set (op aconv) (ps1, ps2)) gs (ps, c) then no_tac
else (step_tac ctxt THEN_ALL_NEW intprover_tac ctxt ((ps, c) :: gs) (d + 1) lim) i
end);
in
fun prover_tac ctxt opt_lim =
SELECT_GOAL (DEEPEN (2, the_default 20 opt_lim) (intprover_tac ctxt [] 0) 4 1);
end;
(* method setup *)
local
val introN = "intro";
val elimN = "elim";
val destN = "dest";
fun modifier name kind kind' att =
Args.$$$ name |-- (kind >> K NONE || kind' |-- Parse.nat --| Args.colon >> SOME)
>> (pair (I: Proof.context -> Proof.context) o att);
val modifiers =
[modifier destN Args.bang_colon Args.bang Context_Rules.dest_bang,
modifier destN Args.colon (Scan.succeed ()) Context_Rules.dest,
modifier elimN Args.bang_colon Args.bang Context_Rules.elim_bang,
modifier elimN Args.colon (Scan.succeed ()) Context_Rules.elim,
modifier introN Args.bang_colon Args.bang Context_Rules.intro_bang,
modifier introN Args.colon (Scan.succeed ()) Context_Rules.intro,
Args.del -- Args.colon >> K (I, Context_Rules.rule_del)];
in
fun method_setup name =
Method.setup name
(Scan.lift (Scan.option Parse.nat) --| Method.sections modifiers >>
(fn opt_lim => fn ctxt =>
SIMPLE_METHOD' (Object_Logic.atomize_prems_tac THEN' prover_tac ctxt opt_lim)))
"intuitionistic proof search";
end;
end;