src/HOLCF/Tr.thy
author wenzelm
Sun, 08 Jul 2007 19:52:08 +0200
changeset 23658 d9f8aa7fe6b0
parent 18081 fe15796b257d
child 25131 2c8caac48ade
permissions -rw-r--r--
tuned;

(*  Title:      HOLCF/Tr.thy
    ID:         $Id$
    Author:     Franz Regensburger

Introduce infix if_then_else_fi and boolean connectives andalso, orelse.
*)

header {* The type of lifted booleans *}

theory Tr
imports Lift
begin

defaultsort pcpo

types
  tr = "bool lift"

translations
  "tr" <= (type) "bool lift" 

consts
  TT     :: "tr"
  FF     :: "tr"
  trifte :: "'c \<rightarrow> 'c \<rightarrow> tr \<rightarrow> 'c"
  trand  :: "tr \<rightarrow> tr \<rightarrow> tr"
  tror   :: "tr \<rightarrow> tr \<rightarrow> tr"
  neg    :: "tr \<rightarrow> tr"
  If2    :: "[tr, 'c, 'c] \<Rightarrow> 'c"

syntax
  "@cifte"   :: "[tr, 'c, 'c] \<Rightarrow> 'c" ("(3If _/ (then _/ else _) fi)" 60)
  "@andalso" :: "tr \<Rightarrow> tr \<Rightarrow> tr"     ("_ andalso _" [36,35] 35)
  "@orelse"  :: "tr \<Rightarrow> tr \<Rightarrow> tr"     ("_ orelse _"  [31,30] 30)
 
translations
  "x andalso y" == "trand\<cdot>x\<cdot>y"
  "x orelse y"  == "tror\<cdot>x\<cdot>y"
  "If b then e1 else e2 fi" == "trifte\<cdot>e1\<cdot>e2\<cdot>b"

translations
  "\<Lambda> TT. t" == "trifte\<cdot>t\<cdot>\<bottom>"
  "\<Lambda> FF. t" == "trifte\<cdot>\<bottom>\<cdot>t"

defs
  TT_def:      "TT \<equiv> Def True"
  FF_def:      "FF \<equiv> Def False"
  neg_def:     "neg \<equiv> flift2 Not"
  ifte_def:    "trifte \<equiv> \<Lambda> t e. FLIFT b. if b then t else e"
  andalso_def: "trand \<equiv> \<Lambda> x y. If x then y else FF fi"
  orelse_def:  "tror \<equiv> \<Lambda> x y. If x then TT else y fi"
  If2_def:     "If2 Q x y \<equiv> If Q then x else y fi"

text {* Exhaustion and Elimination for type @{typ tr} *}

lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF"
apply (unfold FF_def TT_def)
apply (induct_tac "t")
apply fast
apply fast
done

lemma trE: "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
apply (rule Exh_tr [THEN disjE])
apply fast
apply (erule disjE)
apply fast
apply fast
done

text {* tactic for tr-thms with case split *}

lemmas tr_defs = andalso_def orelse_def neg_def ifte_def TT_def FF_def
(*
fun prover t =  prove_goal thy t
 (fn prems =>
        [
        (res_inst_tac [("p","y")] trE 1),
	(REPEAT(asm_simp_tac (simpset() addsimps 
		[o_def,flift1_def,flift2_def,inst_lift_po]@tr_defs) 1))
	])
*)
text {* distinctness for type @{typ tr} *}

lemma dist_less_tr [simp]:
  "\<not> TT \<sqsubseteq> \<bottom>" "\<not> FF \<sqsubseteq> \<bottom>" "\<not> TT \<sqsubseteq> FF" "\<not> FF \<sqsubseteq> TT"
by (simp_all add: tr_defs)

lemma dist_eq_tr [simp]:
  "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT"
by (simp_all add: tr_defs)

text {* lemmas about andalso, orelse, neg and if *}

lemma ifte_thms [simp]:
  "If \<bottom> then e1 else e2 fi = \<bottom>"
  "If FF then e1 else e2 fi = e2"
  "If TT then e1 else e2 fi = e1"
by (simp_all add: ifte_def TT_def FF_def)

lemma andalso_thms [simp]:
  "(TT andalso y) = y"
  "(FF andalso y) = FF"
  "(\<bottom> andalso y) = \<bottom>"
  "(y andalso TT) = y"
  "(y andalso y) = y"
apply (unfold andalso_def, simp_all)
apply (rule_tac p=y in trE, simp_all)
apply (rule_tac p=y in trE, simp_all)
done

lemma orelse_thms [simp]:
  "(TT orelse y) = TT"
  "(FF orelse y) = y"
  "(\<bottom> orelse y) = \<bottom>"
  "(y orelse FF) = y"
  "(y orelse y) = y"
apply (unfold orelse_def, simp_all)
apply (rule_tac p=y in trE, simp_all)
apply (rule_tac p=y in trE, simp_all)
done

lemma neg_thms [simp]:
  "neg\<cdot>TT = FF"
  "neg\<cdot>FF = TT"
  "neg\<cdot>\<bottom> = \<bottom>"
by (simp_all add: neg_def TT_def FF_def)

text {* split-tac for If via If2 because the constant has to be a constant *}
  
lemma split_If2: 
  "P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))"
apply (unfold If2_def)
apply (rule_tac p = "Q" in trE)
apply (simp_all)
done

ML {*
val split_If_tac =
  simp_tac (HOL_basic_ss addsimps [symmetric (thm "If2_def")])
    THEN' (split_tac [thm "split_If2"])
*}

subsection "Rewriting of HOLCF operations to HOL functions"

lemma andalso_or: 
  "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)"
apply (rule_tac p = "t" in trE)
apply simp_all
done

lemma andalso_and:
  "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)"
apply (rule_tac p = "t" in trE)
apply simp_all
done

lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x"
by (simp add: FF_def)

lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)"
by (simp add: FF_def)

lemma Def_bool3 [simp]: "(Def x = TT) = x"
by (simp add: TT_def)

lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)"
by (simp add: TT_def)

lemma If_and_if: 
  "(If Def P then A else B fi) = (if P then A else B)"
apply (rule_tac p = "Def P" in trE)
apply (auto simp add: TT_def[symmetric] FF_def[symmetric])
done

subsection {* Compactness *}

lemma compact_TT [simp]: "compact TT"
by (rule compact_chfin)

lemma compact_FF [simp]: "compact FF"
by (rule compact_chfin)

end