(* Title: Pure/Examples/First_Order_Logic.thy
Author: Makarius
*)
section \<open>A simple formulation of First-Order Logic\<close>
text \<open>
The subsequent theory development illustrates single-sorted intuitionistic
first-order logic with equality, formulated within the Pure framework.
\<close>
theory First_Order_Logic
imports Pure
begin
subsection \<open>Abstract syntax\<close>
typedecl i
typedecl o
judgment Trueprop :: "o \<Rightarrow> prop" ("_" 5)
subsection \<open>Propositional logic\<close>
axiomatization false :: o ("\<bottom>")
where falseE [elim]: "\<bottom> \<Longrightarrow> A"
axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25)
where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
and mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
axiomatization conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<and>" 35)
where conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
and conjD1: "A \<and> B \<Longrightarrow> A"
and conjD2: "A \<and> B \<Longrightarrow> B"
theorem conjE [elim]:
assumes "A \<and> B"
obtains A and B
proof
from \<open>A \<and> B\<close> show A
by (rule conjD1)
from \<open>A \<and> B\<close> show B
by (rule conjD2)
qed
axiomatization disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<or>" 30)
where disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
and disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
and disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
definition true :: o ("\<top>")
where "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
theorem trueI [intro]: \<top>
unfolding true_def ..
definition not :: "o \<Rightarrow> o" ("\<not> _" [40] 40)
where "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
unfolding not_def ..
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
unfolding not_def
proof -
assume "A \<longrightarrow> \<bottom>" and A
then have \<bottom> ..
then show B ..
qed
definition iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25)
where "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
theorem iffI [intro]:
assumes "A \<Longrightarrow> B"
and "B \<Longrightarrow> A"
shows "A \<longleftrightarrow> B"
unfolding iff_def
proof
from \<open>A \<Longrightarrow> B\<close> show "A \<longrightarrow> B" ..
from \<open>B \<Longrightarrow> A\<close> show "B \<longrightarrow> A" ..
qed
theorem iff1 [elim]:
assumes "A \<longleftrightarrow> B" and A
shows B
proof -
from \<open>A \<longleftrightarrow> B\<close> have "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
unfolding iff_def .
then have "A \<longrightarrow> B" ..
from this and \<open>A\<close> show B ..
qed
theorem iff2 [elim]:
assumes "A \<longleftrightarrow> B" and B
shows A
proof -
from \<open>A \<longleftrightarrow> B\<close> have "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
unfolding iff_def .
then have "B \<longrightarrow> A" ..
from this and \<open>B\<close> show A ..
qed
subsection \<open>Equality\<close>
axiomatization equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl "=" 50)
where refl [intro]: "x = x"
and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
by (rule subst)
theorem sym [sym]: "x = y \<Longrightarrow> y = x"
proof -
assume "x = y"
from this and refl show "y = x"
by (rule subst)
qed
subsection \<open>Quantifiers\<close>
axiomatization All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10)
where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
and allD [dest]: "\<forall>x. P x \<Longrightarrow> P a"
axiomatization Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
where exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
and exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"
lemma "(\<exists>x. P (f x)) \<longrightarrow> (\<exists>y. P y)"
proof
assume "\<exists>x. P (f x)"
then obtain x where "P (f x)" ..
then show "\<exists>y. P y" ..
qed
lemma "(\<exists>x. \<forall>y. R x y) \<longrightarrow> (\<forall>y. \<exists>x. R x y)"
proof
assume "\<exists>x. \<forall>y. R x y"
then obtain x where "\<forall>y. R x y" ..
show "\<forall>y. \<exists>x. R x y"
proof
fix y
from \<open>\<forall>y. R x y\<close> have "R x y" ..
then show "\<exists>x. R x y" ..
qed
qed
end