author | wenzelm |
Sat, 07 Aug 2010 14:45:26 +0200 | |
changeset 38222 | dac5fa0ac971 |
parent 37653 | 847e95ca9b0a |
child 42245 | 29e3967550d5 |
permissions | -rw-r--r-- |
(* Title: HOL/Library/Cardinality.thy Author: Brian Huffman *) header {* Cardinality of types *} theory Cardinality imports Main begin subsection {* Preliminary lemmas *} (* These should be moved elsewhere *) lemma (in type_definition) univ: "UNIV = Abs ` A" proof show "Abs ` A \<subseteq> UNIV" by (rule subset_UNIV) show "UNIV \<subseteq> Abs ` A" proof fix x :: 'b have "x = Abs (Rep x)" by (rule Rep_inverse [symmetric]) moreover have "Rep x \<in> A" by (rule Rep) ultimately show "x \<in> Abs ` A" by (rule image_eqI) qed qed lemma (in type_definition) card: "card (UNIV :: 'b set) = card A" by (simp add: univ card_image inj_on_def Abs_inject) subsection {* Cardinalities of types *} syntax "_type_card" :: "type => nat" ("(1CARD/(1'(_')))") translations "CARD('t)" => "CONST card (CONST UNIV \<Colon> 't set)" typed_print_translation {* let fun card_univ_tr' show_sorts _ [Const (@{const_syntax UNIV}, Type(_, [T, _]))] = Syntax.const @{syntax_const "_type_card"} $ Syntax.term_of_typ show_sorts T; in [(@{const_syntax card}, card_univ_tr')] end *} lemma card_unit [simp]: "CARD(unit) = 1" unfolding UNIV_unit by simp lemma card_prod [simp]: "CARD('a \<times> 'b) = CARD('a::finite) * CARD('b::finite)" unfolding UNIV_Times_UNIV [symmetric] by (simp only: card_cartesian_product) lemma card_sum [simp]: "CARD('a + 'b) = CARD('a::finite) + CARD('b::finite)" unfolding UNIV_Plus_UNIV [symmetric] by (simp only: finite card_Plus) lemma card_option [simp]: "CARD('a option) = Suc CARD('a::finite)" unfolding UNIV_option_conv apply (subgoal_tac "(None::'a option) \<notin> range Some") apply (simp add: card_image) apply fast done lemma card_set [simp]: "CARD('a set) = 2 ^ CARD('a::finite)" unfolding Pow_UNIV [symmetric] by (simp only: card_Pow finite numeral_2_eq_2) lemma card_nat [simp]: "CARD(nat) = 0" by (simp add: infinite_UNIV_nat card_eq_0_iff) subsection {* Classes with at least 1 and 2 *} text {* Class finite already captures "at least 1" *} lemma zero_less_card_finite [simp]: "0 < CARD('a::finite)" unfolding neq0_conv [symmetric] by simp lemma one_le_card_finite [simp]: "Suc 0 \<le> CARD('a::finite)" by (simp add: less_Suc_eq_le [symmetric]) text {* Class for cardinality "at least 2" *} class card2 = finite + assumes two_le_card: "2 \<le> CARD('a)" lemma one_less_card: "Suc 0 < CARD('a::card2)" using two_le_card [where 'a='a] by simp lemma one_less_int_card: "1 < int CARD('a::card2)" using one_less_card [where 'a='a] by simp end