author | wenzelm |
Sat, 07 Aug 2010 14:45:26 +0200 | |
changeset 38222 | dac5fa0ac971 |
parent 31061 | 1d117af9f9f3 |
child 58881 | b9556a055632 |
permissions | -rw-r--r-- |
(* Author: Florian Haftmann, TU Muenchen *) header {* Preorders with explicit equivalence relation *} theory Preorder imports Orderings begin class preorder_equiv = preorder begin definition equiv :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "equiv x y \<longleftrightarrow> x \<le> y \<and> y \<le> x" notation equiv ("op ~~") and equiv ("(_/ ~~ _)" [51, 51] 50) notation (xsymbols) equiv ("op \<approx>") and equiv ("(_/ \<approx> _)" [51, 51] 50) notation (HTML output) equiv ("op \<approx>") and equiv ("(_/ \<approx> _)" [51, 51] 50) lemma refl [iff]: "x \<approx> x" unfolding equiv_def by simp lemma trans: "x \<approx> y \<Longrightarrow> y \<approx> z \<Longrightarrow> x \<approx> z" unfolding equiv_def by (auto intro: order_trans) lemma antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x \<approx> y" unfolding equiv_def .. lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> x \<approx> y" by (auto simp add: equiv_def less_le_not_le) lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x \<approx> y" by (auto simp add: equiv_def less_le) lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x \<approx> y" by (simp add: less_le) lemma less_imp_not_eq: "x < y \<Longrightarrow> x \<approx> y \<longleftrightarrow> False" by (simp add: less_le) lemma less_imp_not_eq2: "x < y \<Longrightarrow> y \<approx> x \<longleftrightarrow> False" by (simp add: equiv_def less_le) lemma neq_le_trans: "\<not> a \<approx> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" by (simp add: less_le) lemma le_neq_trans: "a \<le> b \<Longrightarrow> \<not> a \<approx> b \<Longrightarrow> a < b" by (simp add: less_le) lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x \<approx> y" by (simp add: equiv_def) end end