Added alternative version of thms_of_proof that does not recursively
descend into proofs of (named) theorems.
(* Title: Provers/ind
ID: $Id$
Author: Tobias Nipkow
Copyright 1991 University of Cambridge
Generic induction package -- for use with simplifier
*)
signature IND_DATA =
sig
val spec: thm (* All(?P) ==> ?P(?a) *)
end;
signature IND =
sig
val all_frees_tac: string -> int -> tactic
val ALL_IND_TAC: thm -> (int -> tactic) -> (int -> tactic)
val IND_TAC: thm -> (int -> tactic) -> string -> (int -> tactic)
end;
functor InductionFun(Ind_Data: IND_DATA):IND =
struct
local open Ind_Data in
val _$(_$Var(a_ixname,aT)) = concl_of spec;
fun add_term_frees tsig =
let fun add(tm, vars) = case tm of
Free(v,T) => if Type.typ_instance tsig (T,aT) then v ins vars
else vars
| Abs (_,_,body) => add(body,vars)
| rator$rand => add(rator, add(rand, vars))
| _ => vars
in add end;
fun qnt_tac i = fn (tac,var) => tac THEN Tactic.res_inst_tac' [(a_ixname,var)] spec i;
(*Generalizes over all free variables, with the named var outermost.*)
fun all_frees_tac (var:string) i thm =
let val tsig = Sign.tsig_of (Thm.sign_of_thm thm);
val frees = add_term_frees tsig (List.nth(prems_of thm,i-1),[var]);
val frees' = sort (rev_order o string_ord) (remove (op =) var frees) @ [var]
in Library.foldl (qnt_tac i) (all_tac,frees') thm end;
fun REPEAT_SIMP_TAC simp_tac n i =
let fun repeat thm =
(COND (has_fewer_prems n) all_tac
let val k = nprems_of thm
in simp_tac i THEN COND (has_fewer_prems k) repeat all_tac end)
thm
in repeat end;
fun ALL_IND_TAC sch simp_tac i thm =
(resolve_tac [sch] i THEN
REPEAT_SIMP_TAC simp_tac (nprems_of thm) i) thm;
fun IND_TAC sch simp_tac var =
all_frees_tac var THEN' ALL_IND_TAC sch simp_tac;
end
end;