more robust init_database();
proper treatment of views, not tables (amending dd350a41594c);
/* Title: Pure/Tools/build_schedule.scala
Author: Fabian Huch, TU Muenchen
Build schedule generated by Heuristic methods, allowing for more efficient builds.
*/
package isabelle
import Host.Node_Info
import scala.annotation.tailrec
object Build_Schedule {
val engine_name = "build_schedule"
object Config {
def from_job(job: Build_Process.Job): Config = Config(job.name, job.node_info)
}
case class Config(job_name: String, node_info: Node_Info) {
def job_of(start_time: Time): Build_Process.Job =
Build_Process.Job(job_name, "", "", node_info, Date(start_time), None)
}
/* organized historic timing information (extracted from build logs) */
case class Timing_Entry(job_name: String, hostname: String, threads: Int, elapsed: Time)
class Timing_Data private(data: List[Timing_Entry], val host_infos: Host_Infos) {
require(data.nonEmpty)
def speedup(time: Time, factor: Double): Time =
Time.ms((time.ms * factor).toLong)
def is_empty = data.isEmpty
def size = data.length
private lazy val by_job =
data.groupBy(_.job_name).view.mapValues(new Timing_Data(_, host_infos)).toMap
private lazy val by_threads =
data.groupBy(_.threads).view.mapValues(new Timing_Data(_, host_infos)).toMap
private lazy val by_hostname =
data.groupBy(_.hostname).view.mapValues(new Timing_Data(_, host_infos)).toMap
def mean_time: Time = Timing_Data.mean_time(data.map(_.elapsed))
private def best_entry: Timing_Entry = data.minBy(_.elapsed.ms)
def best_threads(job_name: String): Option[Int] = by_job.get(job_name).map(_.best_entry.threads)
def best_time(job_name: String): Time =
by_job.get(job_name).map(_.best_entry.elapsed).getOrElse(
estimate_config(Config(job_name, Node_Info(best_entry.hostname, None, Nil))))
private def hostname_factor(from: String, to: String): Double =
host_infos.host_factor(host_infos.the_host(from), host_infos.the_host(to))
def approximate_threads(threads: Int): Option[Time] = {
val approximations =
by_job.values.filter(_.size > 1).map { data =>
val (ref_hostname, x0) =
data.by_hostname.toList.flatMap((hostname, data) =>
data.by_threads.keys.map(hostname -> _)).minBy((_, n) => Math.abs(n - threads))
def unify_hosts(data: Timing_Data): List[Time] =
data.by_hostname.toList.map((hostname, data) =>
speedup(data.mean_time, hostname_factor(hostname, ref_hostname)))
val entries =
data.by_threads.toList.map((threads, data) =>
threads -> Timing_Data.median_time(unify_hosts(data)))
val y0 = data.by_hostname(ref_hostname).by_threads(x0).mean_time
val (x1, y1_data) =
data.by_hostname(ref_hostname).by_threads.toList.minBy((n, _) => Math.abs(n - threads))
val y1 = y1_data.mean_time
val a = (y1.ms - y0.ms).toDouble / (x1 - x0)
val b = y0.ms - a * x0
Time.ms((a * threads + b).toLong)
}
if (approximations.isEmpty) None else Some(Timing_Data.mean_time(approximations))
}
def threads_factor(divided: Int, divisor: Int): Double =
(approximate_threads(divided), approximate_threads(divisor)) match {
case (Some(dividend), Some(divisor)) => dividend.ms.toDouble / divisor.ms
case _ => divided.toDouble / divisor
}
def estimate_config(config: Config): Time =
by_job.get(config.job_name) match {
case None => mean_time
case Some(data) =>
val hostname = config.node_info.hostname
val threads = host_infos.num_threads(config.node_info)
data.by_threads.get(threads) match {
case None => // interpolate threads
data.by_hostname.get(hostname).flatMap(
_.approximate_threads(threads)).getOrElse {
// per machine, try to approximate config for threads
val approximated =
data.by_hostname.toList.flatMap((hostname1, data) =>
data.approximate_threads(threads).map(time =>
speedup(time, hostname_factor(hostname1, hostname))))
if (approximated.nonEmpty) Timing_Data.mean_time(approximated)
else {
// no machine where config can be approximated
data.approximate_threads(threads).getOrElse {
// only single data point, use global curve to approximate
val global_factor = threads_factor(data.by_threads.keys.head, threads)
speedup(data.by_threads.values.head.mean_time, global_factor)
}
}
}
case Some(data) => // time for job/thread exists, interpolate machine
data.by_hostname.get(hostname).map(_.mean_time).getOrElse {
Timing_Data.median_time(
data.by_hostname.toList.map((hostname1, data) =>
speedup(data.mean_time, hostname_factor(hostname1, hostname))))
}
}
}
}
object Timing_Data {
def median_time(obs: List[Time]): Time = obs.sortBy(_.ms).drop(obs.length / 2).head
def mean_time(obs: Iterable[Time]): Time = Time.ms(obs.map(_.ms).sum / obs.size)
private val dummy_entries =
List(
Timing_Entry("dummy", "dummy", 1, Time.minutes(5)),
Timing_Entry("dummy", "dummy", 8, Time.minutes(1)))
def dummy: Timing_Data = new Timing_Data(dummy_entries, Host_Infos.dummy)
def make(
host_infos: Host_Infos,
build_history: List[(Build_Log.Meta_Info, Build_Log.Build_Info)],
): Timing_Data = {
val hosts = host_infos.hosts
val measurements =
for {
(meta_info, build_info) <- build_history
build_host <- meta_info.get(Build_Log.Prop.build_host).toList
(job_name, session_info) <- build_info.sessions.toList
hostname = session_info.hostname.getOrElse(build_host)
host <- hosts.find(_.info.hostname == build_host).toList
threads = session_info.threads.getOrElse(host.info.num_cpus)
} yield (job_name, hostname, threads) -> session_info.timing.elapsed
val entries =
if (measurements.isEmpty) dummy_entries
else
measurements.groupMap(_._1)(_._2).toList.map {
case ((job_name, hostname, threads), timings) =>
Timing_Entry(job_name, hostname, threads, median_time(timings))
}
new Timing_Data(entries, host_infos)
}
}
/* host information */
case class Host(info: isabelle.Host.Info, build: Build_Cluster.Host)
object Host_Infos {
def dummy: Host_Infos =
new Host_Infos(
List(Host(isabelle.Host.Info("dummy", Nil, 8, Some(1.0)), Build_Cluster.Host("dummy"))))
def apply(build_hosts: List[Build_Cluster.Host], db: SQL.Database): Host_Infos = {
def get_host(build_host: Build_Cluster.Host): Host = {
val info =
isabelle.Host.read_info(db, build_host.name).getOrElse(
error("No benchmark for " + quote(build_host.name)))
Host(info, build_host)
}
new Host_Infos(build_hosts.map(get_host))
}
}
class Host_Infos private(val hosts: List[Host]) {
private val by_hostname = hosts.map(host => host.info.hostname -> host).toMap
def host_factor(from: Host, to: Host): Double =
from.info.benchmark_score.get / to.info.benchmark_score.get
val host_speeds: Ordering[Host] =
Ordering.fromLessThan((host1, host2) => host_factor(host1, host2) > 1)
def the_host(hostname: String): Host =
by_hostname.getOrElse(hostname, error("Unknown host " + quote(hostname)))
def the_host(node_info: Node_Info): Host = the_host(node_info.hostname)
def num_threads(node_info: Node_Info): Int =
if (node_info.rel_cpus.nonEmpty) node_info.rel_cpus.length
else the_host(node_info).info.num_cpus
def available(state: Build_Process.State): Resources = {
val allocated =
state.running.values.map(_.node_info).groupMapReduce(the_host)(List(_))(_ ::: _)
Resources(this, allocated)
}
}
/* offline tracking of resource allocations */
case class Resources(
host_infos: Host_Infos,
allocated_nodes: Map[Host, List[Node_Info]]
) {
val unused_hosts: List[Host] = host_infos.hosts.filter(allocated(_).isEmpty)
def allocated(host: Host): List[Node_Info] = allocated_nodes.getOrElse(host, Nil)
def allocate(node: Node_Info): Resources = {
val host = host_infos.the_host(node)
copy(allocated_nodes = allocated_nodes + (host -> (node :: allocated(host))))
}
def try_allocate_tasks(
hosts: List[Host],
tasks: List[(Build_Process.Task, Int)]
): (List[Config], Resources) =
tasks match {
case Nil => (Nil, this)
case (task, threads) :: tasks =>
val (config, resources) =
hosts.find(available(_, threads)) match {
case Some(host) =>
val node_info = next_node(host, threads)
(Some(Config(task.name, node_info)), allocate(node_info))
case None => (None, this)
}
val (configs, resources1) = resources.try_allocate_tasks(hosts, tasks)
(configs ++ config, resources1)
}
def next_node(host: Host, threads: Int): Node_Info = {
val numa_node_num_cpus = host.info.num_cpus / (host.info.numa_nodes.length max 1)
def explicit_cpus(node_info: Node_Info): List[Int] =
if (node_info.rel_cpus.nonEmpty) node_info.rel_cpus else (0 until numa_node_num_cpus).toList
val used_nodes = allocated(host).groupMapReduce(_.numa_node)(explicit_cpus)(_ ::: _)
val available_nodes = host.info.numa_nodes
val numa_node =
if (!host.build.numa) None
else available_nodes.sortBy(n => used_nodes.getOrElse(Some(n), Nil).length).headOption
val used_cpus = used_nodes.getOrElse(numa_node, Nil).toSet
val available_cpus = (0 until numa_node_num_cpus).filterNot(used_cpus.contains).toList
val rel_cpus = if (available_cpus.length >= threads) available_cpus.take(threads) else Nil
Node_Info(host.info.hostname, numa_node, rel_cpus)
}
def available(host: Host, threads: Int): Boolean = {
val used = allocated(host)
if (used.length >= host.build.jobs) false
else {
if (host.info.numa_nodes.length <= 1)
used.map(host_infos.num_threads).sum + threads <= host.info.num_cpus
else {
def node_threads(n: Int): Int =
used.filter(_.numa_node.contains(n)).map(host_infos.num_threads).sum
host.info.numa_nodes.exists(
node_threads(_) + threads <= host.info.num_cpus / host.info.numa_nodes.length)
}
}
}
}
/* schedule generation */
case class State(build_state: Build_Process.State, current_time: Time) {
def start(config: Config): State =
copy(build_state =
build_state.copy(running = build_state.running +
(config.job_name -> config.job_of(current_time))))
def step(timing_data: Timing_Data): State = {
val remaining =
build_state.running.values.toList.map { job =>
val elapsed = current_time - job.start_date.time
val predicted = timing_data.estimate_config(Config.from_job(job))
val remaining = if (elapsed > predicted) Time.zero else predicted - elapsed
job -> remaining
}
if (remaining.isEmpty) error("Schedule step without running sessions")
else {
val (job, elapsed) = remaining.minBy(_._2.ms)
State(build_state.remove_running(job.name).remove_pending(job.name), current_time + elapsed)
}
}
def finished: Boolean = build_state.pending.isEmpty && build_state.running.isEmpty
}
abstract class Scheduler {
def ready_jobs(state: Build_Process.State): Build_Process.State.Pending =
state.pending.filter(entry => entry.is_ready && !state.is_running(entry.name))
def next(timing: Timing_Data, state: Build_Process.State): List[Config]
def build_duration(timing_data: Timing_Data, build_state: Build_Process.State): Time = {
@tailrec
def simulate(state: State): State =
if (state.finished) state
else {
val state1 =
next(timing_data, state.build_state).foldLeft(state)(_.start(_)).step(timing_data)
simulate(state1)
}
val start = Time.now()
simulate(State(build_state, start)).current_time - start
}
}
/* heuristics */
class Timing_Heuristic(threshold: Time) extends Scheduler {
def next(timing_data: Timing_Data, state: Build_Process.State): List[Config] = {
val host_infos = timing_data.host_infos
val resources = host_infos.available(state)
def best_threads(task: Build_Process.Task): Int =
timing_data.best_threads(task.name).getOrElse(
host_infos.hosts.map(_.info.num_cpus).max min 8)
val ready = ready_jobs(state)
val free = resources.unused_hosts
if (ready.length <= free.length)
resources.try_allocate_tasks(free, ready.map(task => task -> best_threads(task)))._1
else {
val pending_tasks = state.pending.map(_.name).toSet
val graph = state.sessions.graph.restrict(pending_tasks)
val accumulated_time =
graph.node_depth(timing_data.best_time(_).ms).filter((name, _) => graph.is_maximal(name))
val path_time =
accumulated_time.flatMap((name, ms) => graph.all_preds(List(name)).map(_ -> ms)).toMap
def is_critical(task: String): Boolean = path_time(task) > threshold.ms
val (critical, other) =
ready.sortBy(task => path_time(task.name)).partition(task => is_critical(task.name))
val critical_graph = graph.restrict(is_critical)
def parallel_paths(node: String): Int =
critical_graph.imm_succs(node).map(suc => parallel_paths(suc) max 1).sum max 1
val (critical_hosts, other_hosts) =
host_infos.hosts.sorted(host_infos.host_speeds).reverse.splitAt(
critical.map(_.name).map(parallel_paths).sum)
val (configs1, resources1) =
resources.try_allocate_tasks(critical_hosts,
critical.map(task => task -> best_threads(task)))
val (configs2, _) = resources1.try_allocate_tasks(other_hosts, other.map(_ -> 1))
configs1 ::: configs2
}
}
}
class Meta_Heuristic(schedulers: List[Scheduler]) extends Scheduler {
require(schedulers.nonEmpty)
def next(timing_data: Timing_Data, state: Build_Process.State): List[Config] = {
val (best, _) = schedulers.map(h => h -> h.build_duration(timing_data, state)).minBy(_._2.ms)
best.next(timing_data, state)
}
}
/* process for scheduled build */
class Scheduled_Build_Process(
scheduler: Scheduler,
build_context: Build.Context,
build_progress: Progress,
server: SSH.Server,
) extends Build_Process(build_context, build_progress, server) {
protected val start_date = Date.now()
/* global resources with common close() operation */
private final lazy val _log_store: Build_Log.Store = Build_Log.store(build_options)
private final lazy val _log_database: SQL.Database =
try {
val db = _log_store.open_database(server = this.server)
_log_store.init_database(db)
db
}
catch { case exn: Throwable => close(); throw exn }
override def close(): Unit = {
super.close()
Option(_log_database).foreach(_.close())
}
/* previous results via build log */
override def open_build_cluster(): Build_Cluster = {
val build_cluster = super.open_build_cluster()
build_cluster.init()
if (build_context.master && build_context.max_jobs > 0) {
val benchmark_options = build_options.string("build_hostname") = hostname
Benchmark.benchmark(benchmark_options, progress)
}
build_cluster.benchmark()
build_cluster
}
private val timing_data: Timing_Data = {
val cluster_hosts: List[Build_Cluster.Host] =
if (build_context.max_jobs == 0) build_context.build_hosts
else {
val local_build_host =
Build_Cluster.Host(
hostname, jobs = build_context.max_jobs, numa = build_context.numa_shuffling)
local_build_host :: build_context.build_hosts
}
val host_infos = Host_Infos(cluster_hosts, _host_database)
val build_history =
for {
log_name <- _log_database.execute_query_statement(
Build_Log.private_data.meta_info_table.select(List(Build_Log.private_data.log_name)),
List.from[String], res => res.string(Build_Log.private_data.log_name))
meta_info <- _log_store.read_meta_info(_log_database, log_name)
build_info = _log_store.read_build_info(_log_database, log_name)
} yield (meta_info, build_info)
Timing_Data.make(host_infos, build_history)
}
def write_build_log(results: Build.Results, state: Build_Process.State.Results): Unit = {
val sessions =
for {
(session_name, result) <- state.toList
if !result.current
} yield {
val info = build_context.sessions_structure(session_name)
val entry =
if (!results.cancelled(session_name)) {
val status =
if (result.ok) Build_Log.Session_Status.finished
else Build_Log.Session_Status.failed
Build_Log.Session_Entry(
chapter = info.chapter,
groups = info.groups,
hostname = Some(result.node_info.hostname),
threads = Some(timing_data.host_infos.num_threads(result.node_info)),
timing = result.process_result.timing,
sources = Some(result.output_shasum.digest.toString),
status = Some(status))
}
else
Build_Log.Session_Entry(
chapter = info.chapter,
groups = info.groups,
status = Some(Build_Log.Session_Status.cancelled))
session_name -> entry
}
val settings =
Build_Log.Settings.all_settings.map(_.name).map(name =>
name -> Isabelle_System.getenv(name))
val props =
List(
Build_Log.Prop.build_id.name -> build_context.build_uuid,
Build_Log.Prop.build_engine.name -> build_context.engine.name,
Build_Log.Prop.build_host.name -> hostname,
Build_Log.Prop.build_start.name -> Build_Log.print_date(start_date))
val meta_info = Build_Log.Meta_Info(props, settings)
val build_info = Build_Log.Build_Info(sessions.toMap)
val log_name = Build_Log.log_filename(engine = engine_name, date = start_date)
_log_store.update_sessions(_log_database, log_name.file_name, build_info)
_log_store.update_meta_info(_log_database, log_name.file_name, meta_info)
}
/* build process */
case class Cache(state: Build_Process.State, configs: List[Config], estimate: Date) {
def is_current(state: Build_Process.State): Boolean = this.state == state
def is_current_estimate(estimate: Date): Boolean =
this.estimate.time - estimate.time >= Time.seconds(1)
}
private var cache = Cache(Build_Process.State(), Nil, Date.now())
override def next_node_info(state: Build_Process.State, session_name: String): Node_Info = {
val configs =
if (cache.is_current(state)) cache.configs
else scheduler.next(timing_data, state)
configs.find(_.job_name == session_name).get.node_info
}
override def next_jobs(state: Build_Process.State): List[String] =
if (cache.is_current(state)) cache.configs.map(_.job_name)
else {
val next = scheduler.next(timing_data, state)
val estimate = Date(Time.now() + scheduler.build_duration(timing_data, state))
progress.echo_if(build_context.master && cache.is_current_estimate(estimate),
"Estimated completion: " + estimate)
val configs = next.filter(_.node_info.hostname == hostname)
cache = Cache(state, configs, estimate)
configs.map(_.job_name)
}
override def run(): Build.Results = {
val results = super.run()
if (build_context.master) write_build_log(results, snapshot().results)
results
}
}
class Engine extends Build.Engine(engine_name) {
override def open_build_process(
context: Build.Context,
progress: Progress,
server: SSH.Server
): Build_Process = {
val heuristics = List(5, 10, 20).map(minutes => Timing_Heuristic(Time.minutes(minutes)))
val scheduler = new Meta_Heuristic(heuristics)
new Scheduled_Build_Process(scheduler, context, progress, server)
}
}
}