(* Title: Pure/Tools/codegen_thingol.ML
ID: $Id$
Author: Florian Haftmann, TU Muenchen
Intermediate language ("Thin-gol") for code extraction.
*)
signature CODEGEN_THINGOL =
sig
type vname = string;
datatype itype =
IType of string * itype list
| IFun of itype * itype
| IVarT of vname * sort
| IDictT of (string * itype) list;
datatype ipat =
ICons of (string * ipat list) * itype
| IVarP of vname * itype;
datatype iexpr =
IConst of string * itype
| IVarE of vname * itype
| IApp of iexpr * iexpr
| IInst of iexpr * ClassPackage.sortlookup list list
| IAbs of (vname * itype) * iexpr
| ICase of iexpr * (ipat * iexpr) list
| IDictE of (string * iexpr) list
| ILookup of (string list * vname);
val eq_itype: itype * itype -> bool
val eq_ipat: ipat * ipat -> bool
val eq_iexpr: iexpr * iexpr -> bool
val mk_funs: itype list * itype -> itype;
val mk_apps: iexpr * iexpr list -> iexpr;
val pretty_itype: itype -> Pretty.T;
val pretty_ipat: ipat -> Pretty.T;
val pretty_iexpr: iexpr -> Pretty.T;
val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list;
val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a;
val unfold_fun: itype -> itype list * itype;
val unfold_app: iexpr -> iexpr * iexpr list;
val unfold_let: iexpr -> (ipat * iexpr) list * iexpr;
val itype_of_iexpr: iexpr -> itype;
val ipat_of_iexpr: iexpr -> ipat;
val invent_var_t_names: itype list -> int -> vname list -> vname -> vname list;
val invent_var_e_names: iexpr list -> int -> vname list -> vname -> vname list;
datatype def =
Nop
| Fun of (ipat list * iexpr) list * (ClassPackage.sortcontext * itype)
| Typesyn of (vname * string list) list * itype
| Datatype of (vname * string list) list * string list * string list
| Datatypecons of string * itype list
| Class of string list * string list * string list
| Classmember of string * vname * itype
| Classinst of string * (string * string list list) * (string * string) list;
type module;
type transact;
type 'dst transact_fin;
type ('src, 'dst) gen_codegen = 'src -> transact -> 'dst transact_fin;
type gen_defgen = string -> transact -> (def * string list) transact_fin;
val eq_def: def * def -> bool;
val pretty_def: def -> Pretty.T;
val pretty_module: module -> Pretty.T;
val empty_module: module;
val get_def: module -> string -> def;
val merge_module: module * module -> module;
val partof: string list -> module -> module;
val succeed: 'a -> transact -> 'a transact_fin;
val fail: string -> transact -> 'a transact_fin;
val gen_invoke: (string * ('src, 'dst) gen_codegen) list -> string
-> 'src -> transact -> 'dst * transact;
val gen_ensure_def: (string * gen_defgen) list -> string
-> string -> transact -> transact;
val start_transact: (transact -> 'a * transact) -> module -> 'a * module;
val class_eq: string;
val type_bool: string;
val type_pair: string;
val type_list: string;
val type_integer: string;
val cons_pair: string;
val fun_fst: string;
val fun_snd: string;
val Type_integer: itype;
val Cons_true: iexpr;
val Cons_false: iexpr;
val Cons_pair: iexpr;
val Cons_nil: iexpr;
val Cons_cons: iexpr;
val Fun_eq: iexpr;
val Fun_not: iexpr;
val Fun_and: iexpr;
val Fun_or: iexpr;
val Fun_if: iexpr;
val Fun_fst: iexpr;
val Fun_snd: iexpr;
val Fun_0: iexpr;
val Fun_1: iexpr;
val Fun_add: iexpr;
val Fun_mult: iexpr;
val Fun_minus: iexpr;
val Fun_lt: iexpr;
val Fun_le: iexpr;
val Fun_wfrec: iexpr;
val prims: string list;
val extract_defs: iexpr -> string list;
val eta_expand: (string -> int) -> module -> module;
val eta_expand_poly: module -> module;
val connect_datatypes_clsdecls: module -> module;
val tupelize_cons: module -> module;
val eliminate_classes: module -> module;
val debug_level : int ref;
val debug : int -> ('a -> string) -> 'a -> 'a;
val serialize:
((string -> string) -> (string * def) list -> Pretty.T)
-> (string * Pretty.T list -> Pretty.T)
-> (string -> string option)
-> string list list -> string -> module -> Pretty.T
end;
signature CODEGEN_THINGOL_OP =
sig
include CODEGEN_THINGOL;
val `%% : string * itype list -> itype;
val `-> : itype * itype -> itype;
val `--> : itype list * itype -> itype;
val `$ : iexpr * iexpr -> iexpr;
val `$$ : iexpr * iexpr list -> iexpr;
end;
structure CodegenThingolOp: CODEGEN_THINGOL_OP =
struct
(** auxiliary **)
val debug_level = ref 0;
fun debug d f x = (if d <= !debug_level then Output.debug (f x) else (); x);
fun foldl' f (l, []) = the l
| foldl' f (_, (r::rs)) =
let
fun itl (l, []) = l
| itl (l, r::rs) = itl (f (l, r), rs)
in itl (r, rs) end;
fun foldr' f ([], r) = the r
| foldr' f (ls, _) =
let
fun itr [l] = l
| itr (l::ls) = f (l, itr ls)
in itr ls end;
fun unfoldl dest x =
case dest x
of NONE => (x, [])
| SOME (x1, x2) =>
let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
fun unfoldr dest x =
case dest x
of NONE => ([], x)
| SOME (x1, x2) =>
let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
fun map_yield f [] = ([], [])
| map_yield f (x::xs) =
let
val (y, x') = f x
val (ys, xs') = map_yield f xs
in (y::ys, x'::xs') end;
fun get_prefix eq ([], ys) = ([], [], ys)
| get_prefix eq (xs, []) = ([], xs, [])
| get_prefix eq (xs as x::xs', ys as y::ys') =
if eq (x, y) then
let val (ps', xs'', ys'') = get_prefix eq (xs', ys')
in (x::ps', xs'', ys'') end
else ([], xs, ys);
(** language core - types, pattern, expressions **)
(* language representation *)
infix 8 `%%;
infixr 6 `->;
infixr 6 `-->;
infix 4 `$;
infix 4 `$$;
type vname = string;
datatype itype =
IType of string * itype list
| IFun of itype * itype
| IVarT of vname * sort
(*ML auxiliary*)
| IDictT of (string * itype) list;
datatype ipat =
ICons of (string * ipat list) * itype
| IVarP of vname * itype;
datatype iexpr =
IConst of string * itype
| IVarE of vname * itype
| IApp of iexpr * iexpr
| IInst of iexpr * ClassPackage.sortlookup list list
| IAbs of (vname * itype) * iexpr
| ICase of iexpr * (ipat * iexpr) list
(*ML auxiliary*)
| IDictE of (string * iexpr) list
| ILookup of (string list * vname);
val eq_itype = (op =);
val eq_ipat = (op =);
val eq_iexpr = (op =);
val mk_funs = Library.foldr IFun;
val mk_apps = Library.foldl IApp;
fun tyco `%% tys = IType (tyco, tys);
val op `-> = IFun;
fun f `$ x = IApp (f, x);
val op `--> = mk_funs;
val op `$$ = mk_apps;
val unfold_fun = unfoldr
(fn IFun t => SOME t
| _ => NONE);
val unfold_app = unfoldl
(fn IApp e => SOME e
| _ => NONE);
val unfold_let = unfoldr
(fn ICase (e, [(p, e')]) => SOME ((p, e), e')
| _ => NONE);
fun map_itype f_itype (IType (tyco, tys)) =
tyco `%% map f_itype tys
| map_itype f_itype (IFun (t1, t2)) =
f_itype t1 `-> f_itype t2
| map_itype _ (ty as IVarT _) =
ty;
fun map_ipat f_itype f_ipat (ICons ((c, ps), ty)) =
ICons ((c, map f_ipat ps), f_itype ty)
| map_ipat _ _ (p as IVarP _) =
p;
fun map_iexpr f_itype f_ipat f_iexpr (IApp (e1, e2)) =
f_iexpr e1 `$ f_iexpr e2
| map_iexpr f_itype f_ipat f_iexpr (IInst (e, c)) =
IInst (f_iexpr e, c)
| map_iexpr f_itype f_ipat f_iexpr (IAbs (v, e)) =
IAbs (v, f_iexpr e)
| map_iexpr f_itype f_ipat f_iexpr (ICase (e, ps)) =
ICase (f_iexpr e, map (fn (p, e) => (f_ipat p, f_iexpr e)) ps)
| map_iexpr _ _ _ (e as IConst _) =
e
| map_iexpr _ _ _ (e as IVarE _) =
e;
fun fold_itype f_itype (IFun (t1, t2)) =
f_itype t1 #> f_itype t2
| fold_itype _ (ty as IType _) =
I
| fold_itype _ (ty as IVarT _) =
I;
fun fold_ipat f_itype f_ipat (ICons ((_, ps), ty)) =
f_itype ty #> fold f_ipat ps
| fold_ipat f_itype f_ipat (p as IVarP _) =
I;
fun fold_iexpr f_itype f_ipat f_iexpr (IApp (e1, e2)) =
f_iexpr e1 #> f_iexpr e2
| fold_iexpr f_itype f_ipat f_iexpr (IInst (e, c)) =
f_iexpr e
| fold_iexpr f_itype f_ipat f_iexpr (IAbs (v, e)) =
f_iexpr e
| fold_iexpr f_itype f_ipat f_iexpr (ICase (e, ps)) =
f_iexpr e #> fold (fn (p, e) => f_ipat p #> f_iexpr e) ps
| fold_iexpr _ _ _ (e as IConst _) =
I
| fold_iexpr _ _ _ (e as IVarE _) =
I;
(* simple diagnosis *)
fun pretty_itype (IType (tyco, tys)) =
Pretty.gen_list "" "(" ")" (Pretty.str tyco :: map pretty_itype tys)
| pretty_itype (IFun (ty1, ty2)) =
Pretty.gen_list "" "(" ")" [pretty_itype ty1, Pretty.str "->", pretty_itype ty2]
| pretty_itype (IVarT (v, sort)) =
Pretty.str (v ^ enclose "|" "|" (space_implode "|" sort))
fun pretty_ipat (ICons ((cons, ps), ty)) =
Pretty.gen_list " " "(" ")"
(Pretty.str cons :: map pretty_ipat ps @ [Pretty.str ":: ", pretty_itype ty])
| pretty_ipat (IVarP (v, ty)) =
Pretty.block [Pretty.str ("?" ^ v ^ "::"), pretty_itype ty]
fun pretty_iexpr (IConst (f, ty)) =
Pretty.block [Pretty.str (f ^ "::"), pretty_itype ty]
| pretty_iexpr (IVarE (v, ty)) =
Pretty.block [Pretty.str ("?" ^ v ^ "::"), pretty_itype ty]
| pretty_iexpr (IApp (e1, e2)) =
Pretty.enclose "(" ")" [pretty_iexpr e1, Pretty.brk 1, pretty_iexpr e2]
| pretty_iexpr (IInst (e, c)) =
pretty_iexpr e
| pretty_iexpr (IAbs ((v, ty), e)) =
Pretty.enclose "(" ")" [Pretty.str ("?" ^ v ^ " |->"), Pretty.brk 1, pretty_iexpr e]
| pretty_iexpr (ICase (e, cs)) =
Pretty.enclose "(" ")" [
Pretty.str "case ",
pretty_iexpr e,
Pretty.enclose "(" ")" (map (fn (p, e) =>
Pretty.block [
pretty_ipat p,
Pretty.str " => ",
pretty_iexpr e
]
) cs)
]
(* language auxiliary *)
fun itype_of_iexpr (IConst (_, ty)) = ty
| itype_of_iexpr (IVarE (_, ty)) = ty
| itype_of_iexpr (e as IApp (e1, e2)) = (case itype_of_iexpr e1
of (IFun (ty2, ty')) =>
if ty2 = itype_of_iexpr e2
then ty'
else error ("inconsistent application: in " ^ Pretty.output (pretty_iexpr e)
^ ", " ^ (Pretty.output o pretty_itype) ty2 ^ " vs. " ^ (Pretty.output o pretty_itype o itype_of_iexpr) e2)
| _ => error ("expression is not a function: " ^ Pretty.output (pretty_iexpr e1)))
| itype_of_iexpr (IInst (e, cs)) = error ""
| itype_of_iexpr (IAbs ((_, ty1), e2)) = ty1 `-> itype_of_iexpr e2
| itype_of_iexpr (ICase ((_, [(_, e)]))) = itype_of_iexpr e;
fun itype_of_ipat (ICons (_, ty)) = ty
| itype_of_ipat (IVarP (_, ty)) = ty
fun ipat_of_iexpr (IConst (f, ty)) = ICons ((f, []), ty)
| ipat_of_iexpr (IVarE v) = IVarP v
| ipat_of_iexpr (e as IApp _) =
case unfold_app e of (IConst (f, ty), es) =>
ICons ((f, map ipat_of_iexpr es), (snd o unfold_fun) ty);
fun vars_of_itype ty =
let
fun vars (IType (_, tys)) = fold vars tys
| vars (IFun (ty1, ty2)) = vars ty1 #> vars ty2
| vars (IVarT (v, _)) = cons v
in vars ty [] end;
fun vars_of_ipats ps =
let
fun vars (ICons ((_, ps), _)) = fold vars ps
| vars (IVarP (v, _)) = cons v
in fold vars ps [] end;
fun instant_itype (v, sty) ty =
let
fun instant (IType (tyco, tys)) =
tyco `%% map instant tys
| instant (IFun (ty1, ty2)) =
instant ty1 `-> instant ty2
| instant (w as (IVarT (u, _))) =
if v = u then sty else w
in instant ty end;
fun invent_var_t_names tys n used a =
let
fun invent (IType (_, tys)) =
fold invent tys
| invent (IFun (ty1, ty2)) =
invent ty1 #> invent ty2
| invent (IVarT (v, _)) =
cons v
in Term.invent_names (fold invent tys used) a n end;
fun invent_var_e_names es n used a =
let
fun invent (IConst (f, _)) =
I
| invent (IVarE (v, _)) =
cons v
| invent (IApp (e1, e2)) =
invent e1 #> invent e2
| invent (IAbs ((v, _), e)) =
cons v #> invent e
| invent (ICase (e, cs)) =
invent e
#>
fold (fn (p, e) => append (vars_of_ipats [p]) #> invent e) cs
in Term.invent_names (fold invent es used) a n end;
(** language module system - definitions, modules, transactions **)
(* type definitions *)
datatype def =
Nop
| Fun of (ipat list * iexpr) list * (ClassPackage.sortcontext * itype)
| Typesyn of (vname * string list) list * itype
| Datatype of (vname * string list) list * string list * string list
| Datatypecons of string * itype list
| Class of string list * string list * string list
| Classmember of string * string * itype
| Classinst of string * (string * string list list) * (string * string) list;
datatype node = Def of def | Module of node Graph.T;
type module = node Graph.T;
type transact = Graph.key list * module;
datatype 'dst transact_res = Succeed of 'dst | Fail of string;
type 'dst transact_fin = 'dst transact_res * transact;
type ('src, 'dst) gen_codegen = 'src -> transact -> 'dst transact_fin;
type gen_defgen = string -> transact -> (def * string list) transact_fin;
exception FAIL of string;
val eq_def = (op =);
(* simple diagnosis *)
fun pretty_def Nop =
Pretty.str "<NOP>"
| pretty_def (Fun (eqs, (_, ty))) =
Pretty.gen_list " |" "" "" (
map (fn (ps, body) =>
Pretty.block [
Pretty.gen_list "," "[" "]" (map pretty_ipat ps),
Pretty.str " |->",
Pretty.brk 1,
pretty_iexpr body,
Pretty.str "::",
pretty_itype ty
]) eqs
)
| pretty_def (Typesyn (vs, ty)) =
Pretty.block [
Pretty.list "(" ")" (map (pretty_itype o IVarT) vs),
Pretty.str " |=> ",
pretty_itype ty
]
| pretty_def (Datatype (vs, cs, clss)) =
Pretty.block [
Pretty.list "(" ")" (map (pretty_itype o IVarT) vs),
Pretty.str " |=> ",
Pretty.gen_list " |" "" "" (map Pretty.str cs),
Pretty.str ", instance of ",
Pretty.gen_list "," "[" "]" (map Pretty.str clss)
]
| pretty_def (Datatypecons (dtname, tys)) =
Pretty.block [
Pretty.str "cons ",
Pretty.gen_list " ->" "" "" (map pretty_itype tys @ [Pretty.str dtname])
]
| pretty_def (Class (supcls, mems, insts)) =
Pretty.str "Class ..."
| pretty_def (Classmember (cls, v, ty)) =
Pretty.str "Classmember ..."
| pretty_def (Classinst (cls, insts, mems)) =
Pretty.str "Classinst ..."
fun pretty_module modl =
let
fun pretty (name, Module modl) =
Pretty.block (
Pretty.str ("module " ^ name ^ " {")
:: Pretty.brk 1
:: Pretty.chunks (map pretty (AList.make (Graph.get_node modl)
(Graph.strong_conn modl |> List.concat |> rev)))
:: Pretty.str "}" :: nil
)
| pretty (name, Def def) =
Pretty.block [Pretty.str name, Pretty.str " :=", Pretty.brk 1, pretty_def def]
in pretty ("//", Module modl) end;
(* name handling *)
fun dest_name name =
let
val name' = NameSpace.unpack name
val (name'', name_base) = split_last name'
val (modl, shallow) = split_last name''
in (modl, NameSpace.pack [shallow, name_base]) end
handle Empty => error ("not a qualified name: " ^ quote name);
fun dest_modl (Module m) = m;
fun dest_def (Def d) = d;
(* modules *)
val empty_module = Graph.empty; (*read: "depends on"*)
fun get_def modl name =
case dest_name name
of (modlname, base) =>
let
fun get (Module node) [] =
(dest_def o Graph.get_node node) base
| get (Module node) (m::ms) =
get (Graph.get_node node m) ms
in get (Module modl) modlname end;
fun add_def (name, def) =
let
val (modl, base) = dest_name name;
fun add [] =
Graph.new_node (base, Def def)
| add (m::ms) =
Graph.default_node (m, Module empty_module)
#> Graph.map_node m (Module o add ms o dest_modl)
in add modl end;
fun map_def name f =
let
val (modl, base) = dest_name name;
fun mapp [] =
Graph.map_node base (Def o f o dest_def)
| mapp (m::ms) =
Graph.map_node m (Module o mapp ms o dest_modl)
in mapp modl end;
fun add_dep (name1, name2) modl =
if name1 = name2 then modl
else
let
val m1 = dest_name name1 |> apsnd single |> (op @);
val m2 = dest_name name2 |> apsnd single |> (op @);
val (ms, r1, r2) = get_prefix (op =) (m1, m2);
val (ms, s1::r1, s2::r2) = get_prefix (op =) (m1, m2);
val add_edge =
if null r1 andalso null r2
then Graph.add_edge
else Graph.add_edge_acyclic
fun add [] node =
node
|> add_edge (s1, s2)
| add (m::ms) node =
node
|> Graph.map_node m (Module o add ms o dest_modl);
in add ms modl end;
fun map_defs f =
let
fun mapp (Def def) =
(Def o f) def
| mapp (Module modl) =
(Module o Graph.map_nodes mapp) modl
in dest_modl o mapp o Module end;
fun fold_defs f =
let
fun fol prfix (name, Def def) =
f (NameSpace.pack (prfix @ [name]), def)
| fol prfix (name, Module modl) =
Graph.fold_nodes (fol (prfix @ [name])) modl
in Graph.fold_nodes (fol []) end;
fun add_deps f modl =
modl
|> fold add_dep ([] |> fold_defs (append o f) modl);
fun fold_map_defs f =
let
fun foldmap prfix (name, Def def) =
apfst Def o f (NameSpace.pack (prfix @ [name]), def)
| foldmap prfix (name, Module modl) =
apfst Module o Graph.fold_map_nodes (foldmap (prfix @ [name])) modl
in Graph.fold_map_nodes (foldmap []) end;
fun map_def_fun f_ipat f_iexpr (Fun (eqs, cty)) =
Fun (map (fn (ps, rhs) => (map f_ipat ps, f_iexpr rhs)) eqs, cty)
| map_def_fun _ _ def = def;
fun transform_defs f_def f_ipat f_iexpr s modl =
let
val (modl', s') = fold_map_defs f_def modl s
in
modl'
|> map_defs (map_def_fun (f_ipat s') (f_iexpr s'))
end;
fun merge_module modl12 =
let
fun join_module (Module m1, Module m2) =
(SOME o Module) (merge_module (m1, m2))
| join_module (Def d1, Def d2) =
if eq_def (d1, d2) then (SOME o Def) d1 else NONE
| join_module _ =
NONE
in Graph.join (K join_module) modl12 end;
fun partof names modl =
let
datatype pathnode = PN of (string list * (string * pathnode) list);
fun mk_ipath ([], base) (PN (defs, modls)) =
PN (base :: defs, modls)
| mk_ipath (n::ns, base) (PN (defs, modls)) =
modls
|> AList.default (op =) (n, PN ([], []))
|> AList.map_entry (op =) n (mk_ipath (ns, base))
|> (pair defs #> PN);
fun select (PN (defs, modls)) (Module module) =
module
|> Graph.subgraph (Graph.all_succs module (defs @ map fst modls))
|> fold (fn (name, modls) => Graph.map_node name (select modls)) modls
|> Module;
in
Module modl
|> select (fold (mk_ipath o dest_name) (filter NameSpace.is_qualified names) (PN ([], [])))
|> dest_modl
end;
fun add_check_transform (name, (Datatypecons (dtname, _))) =
([([dtname],
fn [Datatype (_, _, [])] => NONE | _ => "attempted to add constructor to already instantiating datatype" |> SOME)],
[(dtname,
fn Datatype (vs, cs, clss) => Datatype (vs, name::cs, clss)
| def => "attempted to add datatype constructor to non-datatype: "
^ (Pretty.output o pretty_def) def |> error)])
| add_check_transform (name, Classmember (clsname, v, ty)) =
let
fun check_var (IType (tyco, tys)) s =
fold check_var tys s
| check_var (IFun (ty1, ty2)) s =
s
|> check_var ty1
|> check_var ty2
| check_var (IVarT (w, sort)) s =
if v = w
andalso member (op =) sort clsname
then "additional class appears at type variable" |> SOME
else NONE
in
([([], fn [] => check_var ty NONE),
([clsname],
fn [Class (_, _, [])] => NONE
| _ => "attempted to add class member to witnessed class" |> SOME)],
[(clsname,
fn Class (supcs, mems, insts) => Class (supcs, name::mems, insts)
| def => "attempted to add class member to non-class"
^ (Pretty.output o pretty_def) def |> error)])
end
| add_check_transform (name, Classinst (clsname, (tyco, arity), memdefs)) =
let
fun check [Classmember (_, v, mtyp_c), Fun (_, (_, mtyp_i))] =
let
val mtyp_i' = instant_itype (v, tyco `%%
map2 IVarT ((invent_var_t_names [mtyp_c] (length arity) [] "a"), arity)) mtyp_c;
in if eq_itype (mtyp_i', mtyp_i) (*! PERHAPS TOO STRICT !*)
then NONE
else "wrong type signature for class member: "
^ (Pretty.output o pretty_itype) mtyp_i' ^ " expected,"
^ (Pretty.output o pretty_itype) mtyp_i ^ " given" |> SOME end
in
(map (fn (memname, memprim) => ((writeln memname; writeln memprim; [memname, memprim]), check)) memdefs,
[(clsname,
fn Class (supcs, mems, insts) => Class (supcs, mems, name::insts)
| def => "attempted to add class instance to non-class"
^ (Pretty.output o pretty_def) def |> error),
(tyco,
fn Datatype (vs, cs, clss) => Datatype (vs, cs, clsname::clss)
| Nop => Nop
| def => "attempted to instantiate non-type to class instance"
^ (Pretty.output o pretty_def) def |> error)])
end
| add_check_transform _ = ([], []);
fun succeed some = (pair o Succeed) some;
fun fail msg = (pair o Fail) msg;
fun check_fail msg' (Succeed dst, trns) = (dst, trns)
| check_fail msg' (Fail errmsg, _) = (tracing ("ROLLBACK CHECK: " ^ errmsg ^ "\n" ^ msg'); raise FAIL errmsg);
fun handle_fail msg f modl =
f modl handle FAIL msg' => ([], modl) |> fail (msg ^ "\n" ^ msg');
fun select_generator print_msg src [] trns =
fail ("no code generator available") trns
| select_generator print_msg src [(gname, cgen)] trns =
(print_msg gname; cgen src trns)
| select_generator print_msg src ((gname, cgen)::cgens) trns =
case cgen src trns
of result as (Succeed _, _) =>
(print_msg gname; result)
| _ => select_generator print_msg src cgens trns
fun gen_invoke codegens msg src (deps, modl) =
([], modl)
|> select_generator (fn gname => "choosing code generator " ^ gname ^ " for source " ^ quote msg)
src codegens
|> check_fail msg
||> (fn (deps', modl') => (append deps' deps, modl'));
fun gen_ensure_def defgens msg name (deps, modl) =
let
fun add (name, def) (deps, modl) =
let
val (checks, trans) = add_check_transform (name, def);
fun check (check_defs, checker) modl =
case checker (check_defs |> filter NameSpace.is_qualified |> map (get_def modl))
of NONE => modl
| SOME e => raise FAIL e;
fun transform (name, f) modl =
modl
|> K (NameSpace.is_qualified name) ? map_def name f;
in
modl
|> fold check checks
|> fold (curry add_dep name) deps
|> map_def name (fn _ => def)
|> fold transform trans
end;
fun ensure_node name modl =
if can (get_def modl) name
then ([name], modl)
else
([], modl |> add_def (name, Nop))
|> select_generator (fn gname => "choosing code generator " ^ gname ^ " for definition of " ^ quote name)
name defgens
|> check_fail msg
|-> (fn (def, names') =>
add (name, def)
#> fold_map ensure_node names')
|-> (fn names' => pair (name :: Library.flat names'))
in
modl
|> ensure_node name
|-> (fn names => pair (names@deps))
end;
fun start_transact f module =
([], module)
|> f
|-> (fn x => fn (_, module) => (x, module));
(** primitive language constructs **)
val class_eq = "Eqtype"; (*defined for all primitve types and extensionally for all datatypes*)
val type_bool = "Bool";
val type_integer = "Integer"; (*infinite!*)
val type_float = "Float";
val type_pair = "Pair";
val type_list = "List";
val cons_true = "True";
val cons_false = "False";
val cons_not = "not";
val cons_pair = "Pair";
val cons_nil = "Nil";
val cons_cons = "Cons";
val fun_primeq = "primeq"; (*defined for all primitive types*)
val fun_eq = "eq"; (*to class eq*)
val fun_not = "not";
val fun_and = "and";
val fun_or = "or";
val fun_if = "if";
val fun_fst = "fst";
val fun_snd = "snd";
val fun_add = "add";
val fun_mult = "mult";
val fun_minus = "minus";
val fun_lt = "lt";
val fun_le = "le";
val fun_wfrec = "wfrec";
local
val A = IVarT ("a", []);
val B = IVarT ("b", []);
val E = IVarT ("e", [class_eq]);
in
val Type_bool = type_bool `%% [];
val Type_integer = type_integer `%% [];
val Type_float = type_float `%% [];
fun Type_pair a b = type_pair `%% [a, b];
fun Type_list a = type_list `%% [a];
val Cons_true = IConst (cons_true, Type_bool);
val Cons_false = IConst (cons_false, Type_bool);
val Cons_pair = IConst (cons_pair, A `-> B `-> Type_pair A B);
val Cons_nil = IConst (cons_nil, Type_list A);
val Cons_cons = IConst (cons_cons, A `-> Type_list A `-> Type_list A);
val Fun_eq = IConst (fun_eq, E `-> E `-> Type_bool);
val Fun_not = IConst (fun_not, Type_bool `-> Type_bool);
val Fun_and = IConst (fun_and, Type_bool `-> Type_bool `-> Type_bool);
val Fun_or = IConst (fun_or, Type_bool `-> Type_bool `-> Type_bool);
val Fun_if = IConst (fun_if, Type_bool `-> A `-> A `-> A);
val Fun_fst = IConst (fun_fst, Type_pair A B `-> A);
val Fun_snd = IConst (fun_snd, Type_pair A B `-> B);
val Fun_0 = IConst ("0", Type_integer);
val Fun_1 = IConst ("1", Type_integer);
val Fun_add = IConst (fun_add, Type_integer `-> Type_integer `-> Type_integer);
val Fun_mult = IConst (fun_mult, Type_integer `-> Type_integer `-> Type_integer);
val Fun_minus = IConst (fun_minus, Type_integer `-> Type_integer);
val Fun_lt = IConst (fun_lt, Type_integer `-> Type_integer `-> Type_bool);
val Fun_le = IConst (fun_le, Type_integer `-> Type_integer `-> Type_bool);
val Fun_wfrec = IConst (fun_wfrec, ((A `-> B) `-> A `-> B) `-> A `-> B);
infix 7 xx;
infix 5 **;
infix 5 &&;
fun a xx b = Type_pair a b;
fun a ** b =
let
val ty_a = itype_of_iexpr a;
val ty_b = itype_of_iexpr b;
in IConst (cons_pair, ty_a `-> ty_b `-> ty_a xx ty_b) `$ a `$ b end;
fun a && b =
let
val ty_a = itype_of_ipat a;
val ty_b = itype_of_ipat b;
in ICons ((cons_pair, [a, b]), ty_a xx ty_b) end;
end; (* local *)
val prims = [class_eq, type_bool, type_integer, type_float, type_pair, type_list,
cons_true, cons_false, cons_pair, cons_nil, cons_cons, fun_primeq, fun_eq, fun_not, fun_and,
fun_or, fun_if, fun_fst, fun_snd, fun_add, fun_mult, fun_minus, fun_lt, fun_le, fun_wfrec];
fun extract_defs e =
let
fun extr_itype (ty as IType (tyco, _)) =
cons tyco #> fold_itype extr_itype ty
| extr_itype ty =
fold_itype extr_itype ty
fun extr_ipat (p as ICons ((c, _), _)) =
cons c #> fold_ipat extr_itype extr_ipat p
| extr_ipat p =
fold_ipat extr_itype extr_ipat p
fun extr_iexpr (e as IConst (f, _)) =
cons f #> fold_iexpr extr_itype extr_ipat extr_iexpr e
| extr_iexpr e =
fold_iexpr extr_itype extr_ipat extr_iexpr e
in extr_iexpr e [] end;
(** generic transformation **)
fun eta_expand query =
let
fun eta_app ((f, ty), es) =
let
val delta = query f - length es;
val add_n = if delta < 0 then 0 else delta;
val add_vars =
invent_var_e_names es add_n [] "x" ~~ Library.drop (length es, (fst o unfold_fun) ty);
in
Library.foldr IAbs (add_vars, IConst (f, ty) `$$ es `$$ (map IVarE add_vars))
end;
fun eta_iexpr' e = map_iexpr I I eta_iexpr e
and eta_iexpr (IConst (f, ty)) =
eta_app ((f, ty), [])
| eta_iexpr (e as IApp _) =
(case (unfold_app e)
of (IConst (f, ty), es) =>
eta_app ((f, ty), map eta_iexpr es)
| _ => eta_iexpr' e)
| eta_iexpr e = eta_iexpr' e;
in map_defs (map_def_fun I eta_iexpr) end;
val eta_expand_poly =
let
fun map_def_fun (def as Fun ([([], e)], cty as (sortctxt, (ty as IFun (ty1, ty2))))) =
if (not o null) sortctxt
orelse (null o vars_of_itype) ty
then def
else
let
val add_var = (hd (invent_var_e_names [e] 1 [] "x"), ty1)
in (Fun ([([IVarP add_var], IAbs (add_var, e))], cty)) end
| map_def_fun def = def;
in map_defs map_def_fun end;
fun connect_datatypes_clsdecls module =
let
fun extract_dep (name, Datatypecons (dtname, _)) =
[(dtname, name)]
| extract_dep (name, Classmember (cls, _, _)) =
[(cls, name)]
| extract_dep (name, def) = []
in add_deps extract_dep module end;
fun tupelize_cons module =
let
fun replace_def (_, (def as Datatypecons (_, []))) acc =
(def, acc)
| replace_def (_, (def as Datatypecons (_, [_]))) acc =
(def, acc)
| replace_def (name, (Datatypecons (tyco, tys))) acc =
(Datatypecons (tyco,
[foldl' (op xx) (NONE, tys)]), name::acc)
| replace_def (_, def) acc = (def, acc);
fun replace_app cs ((f, ty), es) =
if member (op =) cs f
then
let
val (tys, ty') = unfold_fun ty
in IConst (f, foldr' (op xx) (tys, NONE) `-> ty') `$ foldl' (op **) (NONE, es) end
else IConst (f, ty) `$$ es;
fun replace_iexpr cs (IConst (f, ty)) =
replace_app cs ((f, ty), [])
| replace_iexpr cs (e as IApp _) =
(case unfold_app e
of (IConst fty, es) => replace_app cs (fty, map (replace_iexpr cs) es)
| _ => map_iexpr I I (replace_iexpr cs) e)
| replace_iexpr cs e = map_iexpr I I (replace_iexpr cs) e;
fun replace_ipat cs (p as ICons ((c, ps), ty)) =
if member (op =) cs c then
ICons ((c, [(foldl' (op &&) (NONE, map (replace_ipat cs) ps))]), ty)
else map_ipat I (replace_ipat cs) p
| replace_ipat cs p = map_ipat I (replace_ipat cs) p;
in
transform_defs replace_def replace_ipat replace_iexpr [cons_cons] module
end;
fun eliminate_classes module =
let
fun mk_cls_typ_map memberdecls ty_inst =
map (fn (memname, (v, ty)) =>
(memname, ty |> instant_itype (v, ty_inst))) memberdecls;
fun transform_dicts (Class (supcls, members, insts)) =
let
val memberdecls = AList.make
((fn Classmember (_, v, ty) => (v, ty)) o get_def module) members;
val varname_cls = invent_var_t_names (map (snd o snd) memberdecls) 1 [] "a" |> hd;
in
Typesyn ([(varname_cls, [])], IDictT (mk_cls_typ_map memberdecls (IVarT (varname_cls, []))))
end
| transform_dicts (Classinst (tyco, (cls, arity), memdefs)) =
let
val Class (_, members, _) = get_def module cls;
val memberdecls = AList.make
((fn Classmember (_, v, ty) => (v, ty)) o get_def module) members;
val ty_arity = tyco `%% map IVarT (invent_var_t_names (map (snd o snd) memberdecls)
(length arity) [] "a" ~~ arity);
val inst_typ_map = mk_cls_typ_map memberdecls ty_arity;
val memdefs_ty = map (fn (memname, memprim) =>
(memname, (memprim, (the o AList.lookup (op =) inst_typ_map) memname))) memdefs;
in
Fun ([([], IDictE (map (apsnd IConst) memdefs_ty))],
([], IDictT inst_typ_map))
end
| transform_dicts d = d
fun transform_defs (Fun (ds, (sortctxt, ty))) =
let
fun reduce f xs = foldl' f (NONE, xs);
val varnames_ctxt =
sortctxt
|> length o Library.flat o map snd
|> (fn used => invent_var_e_names (map snd ds) used ((vars_of_ipats o fst o hd) ds) "d")
|> unflat (map snd sortctxt);
val vname_alist = map2 (fn ((vt, sort), vs) => (vt, vs ~~ sort)) (sortctxt, varnames_ctxt);
fun add_typarms ty =
map (reduce (op xx) o (fn (vt, vss) => map (fn (_, cls) => cls `%% [IVarT (vt, [])]) vss)) vname_alist
`--> ty;
fun add_parms ps =
map (reduce (op &&) o (fn (vt, vss) => map (fn (v, cls) => IVarP (v, cls `%% [IVarT (vt, [])])) vss)) vname_alist
@ ps;
fun transform_itype (IVarT (v, s)) =
IVarT (v, [])
| transform_itype ty =
map_itype transform_itype ty;
fun transform_ipat p =
map_ipat transform_itype transform_ipat p;
fun transform_lookup (ClassPackage.Instance ((cdict, idict), ls)) =
ls
|> transform_lookups
|-> (fn ty =>
curry mk_apps (IConst (idict, cdict `%% ty))
#> pair (cdict `%% ty))
| transform_lookup (ClassPackage.Lookup (deriv, (v, i))) =
let
val (v', cls) =
(nth o the oo AList.lookup (op =)) vname_alist v i;
fun mk_parm tyco = tyco `%% [IVarT (v, [])];
in (mk_parm (hd (deriv)), ILookup (rev deriv, v')) end
and transform_lookups lss =
map_yield (map_yield transform_lookup
#> apfst (reduce (op xx))
#> apsnd (reduce (op **))) lss;
fun transform_iexpr (IInst (e, ls)) =
transform_iexpr e `$$ (snd o transform_lookups) ls
| transform_iexpr e =
map_iexpr transform_itype transform_ipat transform_iexpr e;
fun transform_rhs (ps, rhs) = (add_parms ps, transform_iexpr rhs)
in Fun (map transform_rhs ds, ([], add_typarms ty)) end
| transform_defs d = d
in
module
|> map_defs transform_dicts
|> map_defs transform_defs
end;
(** generic serialization **)
(* resolving *)
fun mk_resolvtab nspgrp validate module =
let
fun ensure_unique prfix prfix' name name' (locals, tab) =
let
fun uniquify name n =
let
val name' = if n = 0 then name else name ^ "_" ^ string_of_int n
in
if member (op =) locals name'
then uniquify name (n+1)
else case validate name
of NONE => name'
| SOME name' => uniquify name' n
end;
val name'' = uniquify name' 0;
in
(locals, tab)
|> apsnd (Symtab.update_new
(NameSpace.pack (prfix @ [name]), NameSpace.pack (prfix' @ [name''])))
|> apfst (cons name'')
|> pair name''
end;
fun fill_in prfix prfix' node tab =
let
val keys = Graph.keys node;
val nodes = AList.make (Graph.get_node node) keys;
val (mods, defs) =
nodes
|> List.partition (fn (_, Module _) => true | _ => false)
|> apfst (map (fn (name, Module m) => (name, m)))
|> apsnd (map fst)
fun modl_validate (name, modl) (locals, tab) =
(locals, tab)
|> ensure_unique prfix prfix' name name
|-> (fn name' => apsnd (fill_in (prfix @ [name]) (prfix @ [name']) modl))
fun ensure_unique_sidf sidf =
let
val [shallow, name] = NameSpace.unpack sidf;
in
nspgrp
|> get_first
(fn grp => if member (op =) grp shallow
then grp |> remove (op =) shallow |> SOME else NONE)
|> these
|> map (fn s => NameSpace.pack [s, name])
|> exists (member (op =) defs)
|> (fn b => if b then sidf else name)
end;
fun def_validate sidf (locals, tab) =
(locals, tab)
|> ensure_unique prfix prfix' sidf (ensure_unique_sidf sidf)
|> snd
in
([], tab)
|> fold modl_validate mods
|> fold def_validate defs
|> snd
end;
in
Symtab.empty
|> fill_in [] [] module
end;
fun mk_resolv tab =
let
fun resolver modl name =
if NameSpace.is_qualified name then
let
val modl' = if null modl then [] else (NameSpace.unpack o the o Symtab.lookup tab o NameSpace.pack) modl;
val name' = (NameSpace.unpack o the o Symtab.lookup tab) name
in
(NameSpace.pack o #3 o get_prefix (op =)) (modl', name')
end
else name
in resolver end;
(* serialization *)
fun serialize s_def s_module validate nspgrp name_root module =
let
val resolvtab = mk_resolvtab nspgrp validate module;
val resolver = mk_resolv resolvtab;
fun seri prfx ([(name, Module module)]) =
s_module (name,
(map (seri (prfx @ [name]))
((map (AList.make (Graph.get_node module)) o rev o Graph.strong_conn) module)))
| seri prfx ds =
s_def (resolver prfx) (map (fn (name, Def def) => (name, def)) ds)
in
seri [] [(name_root, Module module)]
end;
end; (* struct *)
structure CodegenThingol : CODEGEN_THINGOL =
struct
open CodegenThingolOp;
end; (* struct *)