(* Title: HOL/Matrix/SparseMatrix.thy
ID: $Id$
Author: Steven Obua
*)
theory SparseMatrix
imports Matrix
begin
types
'a spvec = "(nat * 'a) list"
'a spmat = "('a spvec) spvec"
definition sparse_row_vector :: "('a::lordered_ring) spvec \<Rightarrow> 'a matrix" where
sparse_row_vector_def: "sparse_row_vector arr = foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr"
definition sparse_row_matrix :: "('a::lordered_ring) spmat \<Rightarrow> 'a matrix" where
sparse_row_matrix_def: "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr"
code_datatype sparse_row_vector sparse_row_matrix
lemma sparse_row_vector_empty [simp]: "sparse_row_vector [] = 0"
by (simp add: sparse_row_vector_def)
lemma sparse_row_matrix_empty [simp]: "sparse_row_matrix [] = 0"
by (simp add: sparse_row_matrix_def)
lemmas [code func] = sparse_row_vector_empty [symmetric]
lemma foldl_distrstart[rule_format]: "! a x y. (f (g x y) a = g x (f y a)) \<Longrightarrow> ! x y. (foldl f (g x y) l = g x (foldl f y l))"
by (induct l, auto)
lemma sparse_row_vector_cons[simp]: "sparse_row_vector (a#arr) = (singleton_matrix 0 (fst a) (snd a)) + (sparse_row_vector arr)"
apply (induct arr)
apply (auto simp add: sparse_row_vector_def)
apply (simp add: foldl_distrstart[of "\<lambda>m x. m + singleton_matrix 0 (fst x) (snd x)" "\<lambda>x m. singleton_matrix 0 (fst x) (snd x) + m"])
done
lemma sparse_row_vector_append[simp]: "sparse_row_vector (a @ b) = (sparse_row_vector a) + (sparse_row_vector b)"
by (induct a, auto)
lemma nrows_spvec[simp]: "nrows (sparse_row_vector x) <= (Suc 0)"
apply (induct x)
apply (simp_all add: add_nrows)
done
lemma sparse_row_matrix_cons: "sparse_row_matrix (a#arr) = ((move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0)) + sparse_row_matrix arr"
apply (induct arr)
apply (auto simp add: sparse_row_matrix_def)
apply (simp add: foldl_distrstart[of "\<lambda>m x. m + (move_matrix (sparse_row_vector (snd x)) (int (fst x)) 0)"
"% a m. (move_matrix (sparse_row_vector (snd a)) (int (fst a)) 0) + m"])
done
lemma sparse_row_matrix_append: "sparse_row_matrix (arr@brr) = (sparse_row_matrix arr) + (sparse_row_matrix brr)"
apply (induct arr)
apply (auto simp add: sparse_row_matrix_cons)
done
consts
sorted_spvec :: "'a spvec \<Rightarrow> bool"
sorted_spmat :: "'a spmat \<Rightarrow> bool"
primrec
"sorted_spmat [] = True"
"sorted_spmat (a#as) = ((sorted_spvec (snd a)) & (sorted_spmat as))"
primrec
"sorted_spvec [] = True"
sorted_spvec_step: "sorted_spvec (a#as) = (case as of [] \<Rightarrow> True | b#bs \<Rightarrow> ((fst a < fst b) & (sorted_spvec as)))"
declare sorted_spvec.simps [simp del]
lemma sorted_spvec_empty[simp]: "sorted_spvec [] = True"
by (simp add: sorted_spvec.simps)
lemma sorted_spvec_cons1: "sorted_spvec (a#as) \<Longrightarrow> sorted_spvec as"
apply (induct as)
apply (auto simp add: sorted_spvec.simps)
done
lemma sorted_spvec_cons2: "sorted_spvec (a#b#t) \<Longrightarrow> sorted_spvec (a#t)"
apply (induct t)
apply (auto simp add: sorted_spvec.simps)
done
lemma sorted_spvec_cons3: "sorted_spvec(a#b#t) \<Longrightarrow> fst a < fst b"
apply (auto simp add: sorted_spvec.simps)
done
lemma sorted_sparse_row_vector_zero[rule_format]: "m <= n \<longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_vector arr) j m = 0"
apply (induct arr)
apply (auto)
apply (frule sorted_spvec_cons2,simp)+
apply (frule sorted_spvec_cons3, simp)
done
lemma sorted_sparse_row_matrix_zero[rule_format]: "m <= n \<longrightarrow> sorted_spvec ((n,a)#arr) \<longrightarrow> Rep_matrix (sparse_row_matrix arr) m j = 0"
apply (induct arr)
apply (auto)
apply (frule sorted_spvec_cons2, simp)
apply (frule sorted_spvec_cons3, simp)
apply (simp add: sparse_row_matrix_cons neg_def)
done
consts
smult_spvec :: "('a::lordered_ring) \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec"
primrec minus_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec" where
"minus_spvec [] = []"
| "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)"
primrec abs_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec" where
"abs_spvec [] = []"
| "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)"
lemma sparse_row_vector_minus:
"sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)"
apply (induct v)
apply (simp_all add: sparse_row_vector_cons)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
done
lemma sparse_row_vector_abs:
"sorted_spvec v \<Longrightarrow> sparse_row_vector (abs_spvec v) = abs (sparse_row_vector v)"
apply (induct v)
apply (simp_all add: sparse_row_vector_cons)
apply (frule_tac sorted_spvec_cons1, simp)
apply (simp only: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply auto
apply (subgoal_tac "Rep_matrix (sparse_row_vector v) 0 a = 0")
apply (simp)
apply (rule sorted_sparse_row_vector_zero)
apply auto
done
lemma sorted_spvec_minus_spvec:
"sorted_spvec v \<Longrightarrow> sorted_spvec (minus_spvec v)"
apply (induct v)
apply (simp)
apply (frule sorted_spvec_cons1, simp)
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spvec_abs_spvec:
"sorted_spvec v \<Longrightarrow> sorted_spvec (abs_spvec v)"
apply (induct v)
apply (simp)
apply (frule sorted_spvec_cons1, simp)
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
defs
smult_spvec_def: "smult_spvec y arr == map (% a. (fst a, y * snd a)) arr"
lemma smult_spvec_empty[simp]: "smult_spvec y [] = []"
by (simp add: smult_spvec_def)
lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)"
by (simp add: smult_spvec_def)
consts addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec \<Rightarrow> 'a spvec"
recdef addmult_spvec "measure (% (y, a, b). length a + (length b))"
"addmult_spvec (y, arr, []) = arr"
"addmult_spvec (y, [], brr) = smult_spvec y brr"
"addmult_spvec (y, a#arr, b#brr) = (
if (fst a) < (fst b) then (a#(addmult_spvec (y, arr, b#brr)))
else (if (fst b < fst a) then ((fst b, y * (snd b))#(addmult_spvec (y, a#arr, brr)))
else ((fst a, (snd a)+ y*(snd b))#(addmult_spvec (y, arr,brr)))))"
lemma addmult_spvec_empty1[simp]: "addmult_spvec (y, [], a) = smult_spvec y a"
by (induct a) auto
lemma addmult_spvec_empty2[simp]: "addmult_spvec (y, a, []) = a"
by (induct a) auto
lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) \<Longrightarrow> (f::'a\<Rightarrow>('a::lordered_ring)) 0 = 0 \<Longrightarrow>
sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)"
apply (induct a)
apply (simp_all add: apply_matrix_add)
done
lemma sparse_row_vector_smult: "sparse_row_vector (smult_spvec y a) = scalar_mult y (sparse_row_vector a)"
apply (induct a)
apply (simp_all add: smult_spvec_cons scalar_mult_add)
done
lemma sparse_row_vector_addmult_spvec: "sparse_row_vector (addmult_spvec (y::'a::lordered_ring, a, b)) =
(sparse_row_vector a) + (scalar_mult y (sparse_row_vector b))"
apply (rule addmult_spvec.induct[of _ y])
apply (simp add: scalar_mult_add smult_spvec_cons sparse_row_vector_smult singleton_matrix_add)+
done
lemma sorted_smult_spvec[rule_format]: "sorted_spvec a \<Longrightarrow> sorted_spvec (smult_spvec y a)"
apply (auto simp add: smult_spvec_def)
apply (induct a)
apply (auto simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spvec_addmult_spvec_helper: "\<lbrakk>sorted_spvec (addmult_spvec (y, (a, b) # arr, brr)); aa < a; sorted_spvec ((a, b) # arr);
sorted_spvec ((aa, ba) # brr)\<rbrakk> \<Longrightarrow> sorted_spvec ((aa, y * ba) # addmult_spvec (y, (a, b) # arr, brr))"
apply (induct brr)
apply (auto simp add: sorted_spvec.simps)
apply (simp split: list.split)
apply (auto)
apply (simp split: list.split)
apply (auto)
done
lemma sorted_spvec_addmult_spvec_helper2:
"\<lbrakk>sorted_spvec (addmult_spvec (y, arr, (aa, ba) # brr)); a < aa; sorted_spvec ((a, b) # arr); sorted_spvec ((aa, ba) # brr)\<rbrakk>
\<Longrightarrow> sorted_spvec ((a, b) # addmult_spvec (y, arr, (aa, ba) # brr))"
apply (induct arr)
apply (auto simp add: smult_spvec_def sorted_spvec.simps)
apply (simp split: list.split)
apply (auto)
done
lemma sorted_spvec_addmult_spvec_helper3[rule_format]:
"sorted_spvec (addmult_spvec (y, arr, brr)) \<longrightarrow> sorted_spvec ((aa, b) # arr) \<longrightarrow> sorted_spvec ((aa, ba) # brr)
\<longrightarrow> sorted_spvec ((aa, b + y * ba) # (addmult_spvec (y, arr, brr)))"
apply (rule addmult_spvec.induct[of _ y arr brr])
apply (simp_all add: sorted_spvec.simps smult_spvec_def)
done
lemma sorted_addmult_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (addmult_spvec (y, a, b))"
apply (rule addmult_spvec.induct[of _ y a b])
apply (simp_all add: sorted_smult_spvec)
apply (rule conjI, intro strip)
apply (case_tac "~(a < aa)")
apply (simp_all)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp add: sorted_spvec_addmult_spvec_helper)
apply (intro strip | rule conjI)+
apply (frule_tac as=arr in sorted_spvec_cons1)
apply (simp add: sorted_spvec_addmult_spvec_helper2)
apply (intro strip)
apply (frule_tac as=arr in sorted_spvec_cons1)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp)
apply (simp_all add: sorted_spvec_addmult_spvec_helper3)
done
consts
mult_spvec_spmat :: "('a::lordered_ring) spvec * 'a spvec * 'a spmat \<Rightarrow> 'a spvec"
recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))"
"mult_spvec_spmat (c, [], brr) = c"
"mult_spvec_spmat (c, arr, []) = c"
"mult_spvec_spmat (c, a#arr, b#brr) = (
if ((fst a) < (fst b)) then (mult_spvec_spmat (c, arr, b#brr))
else (if ((fst b) < (fst a)) then (mult_spvec_spmat (c, a#arr, brr))
else (mult_spvec_spmat (addmult_spvec (snd a, c, snd b), arr, brr))))"
lemma sparse_row_mult_spvec_spmat[rule_format]: "sorted_spvec (a::('a::lordered_ring) spvec) \<longrightarrow> sorted_spvec B \<longrightarrow>
sparse_row_vector (mult_spvec_spmat (c, a, B)) = (sparse_row_vector c) + (sparse_row_vector a) * (sparse_row_matrix B)"
proof -
have comp_1: "!! a b. a < b \<Longrightarrow> Suc 0 <= nat ((int b)-(int a))" by arith
have not_iff: "!! a b. a = b \<Longrightarrow> (~ a) = (~ b)" by simp
have max_helper: "!! a b. ~ (a <= max (Suc a) b) \<Longrightarrow> False"
by arith
{
fix a
fix v
assume a:"a < nrows(sparse_row_vector v)"
have b:"nrows(sparse_row_vector v) <= 1" by simp
note dummy = less_le_trans[of a "nrows (sparse_row_vector v)" 1, OF a b]
then have "a = 0" by simp
}
note nrows_helper = this
show ?thesis
apply (rule mult_spvec_spmat.induct)
apply simp+
apply (rule conjI)
apply (intro strip)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp add: ring_simps sparse_row_matrix_cons)
apply (simplesubst Rep_matrix_zero_imp_mult_zero)
apply (simp)
apply (intro strip)
apply (rule disjI2)
apply (intro strip)
apply (subst nrows)
apply (rule order_trans[of _ 1])
apply (simp add: comp_1)+
apply (subst Rep_matrix_zero_imp_mult_zero)
apply (intro strip)
apply (case_tac "k <= aa")
apply (rule_tac m1 = k and n1 = a and a1 = b in ssubst[OF sorted_sparse_row_vector_zero])
apply (simp_all)
apply (rule impI)
apply (rule disjI2)
apply (rule nrows)
apply (rule order_trans[of _ 1])
apply (simp_all add: comp_1)
apply (intro strip | rule conjI)+
apply (frule_tac as=arr in sorted_spvec_cons1)
apply (simp add: ring_simps)
apply (subst Rep_matrix_zero_imp_mult_zero)
apply (simp)
apply (rule disjI2)
apply (intro strip)
apply (simp add: sparse_row_matrix_cons neg_def)
apply (case_tac "a <= aa")
apply (erule sorted_sparse_row_matrix_zero)
apply (simp_all)
apply (intro strip)
apply (case_tac "a=aa")
apply (simp_all)
apply (frule_tac as=arr in sorted_spvec_cons1)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp add: sparse_row_matrix_cons ring_simps sparse_row_vector_addmult_spvec)
apply (rule_tac B1 = "sparse_row_matrix brr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
apply (auto)
apply (rule sorted_sparse_row_matrix_zero)
apply (simp_all)
apply (rule_tac A1 = "sparse_row_vector arr" in ssubst[OF Rep_matrix_zero_imp_mult_zero])
apply (auto)
apply (rule_tac m=k and n = aa and a = b and arr=arr in sorted_sparse_row_vector_zero)
apply (simp_all)
apply (simp add: neg_def)
apply (drule nrows_notzero)
apply (drule nrows_helper)
apply (arith)
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
apply (subst Rep_matrix_mult)
apply (rule_tac j1=aa in ssubst[OF foldseq_almostzero])
apply (simp_all)
apply (intro strip, rule conjI)
apply (intro strip)
apply (drule_tac max_helper)
apply (simp)
apply (auto)
apply (rule zero_imp_mult_zero)
apply (rule disjI2)
apply (rule nrows)
apply (rule order_trans[of _ 1])
apply (simp)
apply (simp)
done
qed
lemma sorted_mult_spvec_spmat[rule_format]:
"sorted_spvec (c::('a::lordered_ring) spvec) \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spvec (mult_spvec_spmat (c, a, B))"
apply (rule mult_spvec_spmat.induct[of _ c a B])
apply (simp_all add: sorted_addmult_spvec)
done
consts
mult_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
primrec
"mult_spmat [] A = []"
"mult_spmat (a#as) A = (fst a, mult_spvec_spmat ([], snd a, A))#(mult_spmat as A)"
lemma sparse_row_mult_spmat[rule_format]:
"sorted_spmat A \<longrightarrow> sorted_spvec B \<longrightarrow> sparse_row_matrix (mult_spmat A B) = (sparse_row_matrix A) * (sparse_row_matrix B)"
apply (induct A)
apply (auto simp add: sparse_row_matrix_cons sparse_row_mult_spvec_spmat ring_simps move_matrix_mult)
done
lemma sorted_spvec_mult_spmat[rule_format]:
"sorted_spvec (A::('a::lordered_ring) spmat) \<longrightarrow> sorted_spvec (mult_spmat A B)"
apply (induct A)
apply (auto)
apply (drule sorted_spvec_cons1, simp)
apply (case_tac A)
apply (auto simp add: sorted_spvec.simps)
done
lemma sorted_spmat_mult_spmat[rule_format]:
"sorted_spmat (B::('a::lordered_ring) spmat) \<longrightarrow> sorted_spmat (mult_spmat A B)"
apply (induct A)
apply (auto simp add: sorted_mult_spvec_spmat)
done
consts
add_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec \<Rightarrow> 'a spvec"
add_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat \<Rightarrow> 'a spmat"
recdef add_spvec "measure (% (a, b). length a + (length b))"
"add_spvec (arr, []) = arr"
"add_spvec ([], brr) = brr"
"add_spvec (a#arr, b#brr) = (
if (fst a) < (fst b) then (a#(add_spvec (arr, b#brr)))
else (if (fst b < fst a) then (b#(add_spvec (a#arr, brr)))
else ((fst a, (snd a)+(snd b))#(add_spvec (arr,brr)))))"
lemma add_spvec_empty1[simp]: "add_spvec ([], a) = a"
by (induct a, auto)
lemma add_spvec_empty2[simp]: "add_spvec (a, []) = a"
by (induct a, auto)
lemma sparse_row_vector_add: "sparse_row_vector (add_spvec (a,b)) = (sparse_row_vector a) + (sparse_row_vector b)"
apply (rule add_spvec.induct[of _ a b])
apply (simp_all add: singleton_matrix_add)
done
recdef add_spmat "measure (% (A,B). (length A)+(length B))"
"add_spmat ([], bs) = bs"
"add_spmat (as, []) = as"
"add_spmat (a#as, b#bs) = (
if fst a < fst b then
(a#(add_spmat (as, b#bs)))
else (if fst b < fst a then
(b#(add_spmat (a#as, bs)))
else
((fst a, add_spvec (snd a, snd b))#(add_spmat (as, bs)))))"
lemma sparse_row_add_spmat: "sparse_row_matrix (add_spmat (A, B)) = (sparse_row_matrix A) + (sparse_row_matrix B)"
apply (rule add_spmat.induct)
apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add)
done
lemmas [code func] = sparse_row_add_spmat [symmetric]
lemmas [code func] = sparse_row_vector_add [symmetric]
lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))"
proof -
have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spvec (x, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))"
by (rule add_spvec.induct[of _ _ brr], auto)
then show ?thesis
by (case_tac brr, auto)
qed
lemma sorted_add_spmat_helper1[rule_format]: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))"
proof -
have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spmat (x, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))"
by (rule add_spmat.induct[of _ _ brr], auto)
then show ?thesis
by (case_tac brr, auto)
qed
lemma sorted_add_spvec_helper[rule_format]: "add_spvec (arr, brr) = (ab, bb) # list \<longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))"
apply (rule add_spvec.induct[of _ arr brr])
apply (auto)
done
lemma sorted_add_spmat_helper[rule_format]: "add_spmat (arr, brr) = (ab, bb) # list \<longrightarrow> ((arr \<noteq> [] & ab = fst (hd arr)) | (brr \<noteq> [] & ab = fst (hd brr)))"
apply (rule add_spmat.induct[of _ arr brr])
apply (auto)
done
lemma add_spvec_commute: "add_spvec (a, b) = add_spvec (b, a)"
by (rule add_spvec.induct[of _ a b], auto)
lemma add_spmat_commute: "add_spmat (a, b) = add_spmat (b, a)"
apply (rule add_spmat.induct[of _ a b])
apply (simp_all add: add_spvec_commute)
done
lemma sorted_add_spvec_helper2: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab"
apply (drule sorted_add_spvec_helper1)
apply (auto)
apply (case_tac brr)
apply (simp_all)
apply (drule_tac sorted_spvec_cons3)
apply (simp)
done
lemma sorted_add_spmat_helper2: "add_spmat ((a,b)#arr, brr) = (ab, bb) # list \<Longrightarrow> aa < a \<Longrightarrow> sorted_spvec ((aa, ba) # brr) \<Longrightarrow> aa < ab"
apply (drule sorted_add_spmat_helper1)
apply (auto)
apply (case_tac brr)
apply (simp_all)
apply (drule_tac sorted_spvec_cons3)
apply (simp)
done
lemma sorted_spvec_add_spvec[rule_format]: "sorted_spvec a \<longrightarrow> sorted_spvec b \<longrightarrow> sorted_spvec (add_spvec (a, b))"
apply (rule add_spvec.induct[of _ a b])
apply (simp_all)
apply (rule conjI)
apply (intro strip)
apply (simp)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (simp add: sorted_add_spvec_helper2)
apply (clarify)
apply (rule conjI)
apply (case_tac "a=aa")
apply (simp)
apply (clarify)
apply (frule_tac as=arr in sorted_spvec_cons1, simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (simp add: sorted_add_spvec_helper2 add_spvec_commute)
apply (case_tac "a=aa")
apply (simp_all)
apply (clarify)
apply (frule_tac as=arr in sorted_spvec_cons1)
apply (frule_tac as=brr in sorted_spvec_cons1)
apply (simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (drule_tac sorted_add_spvec_helper)
apply (auto)
apply (case_tac arr)
apply (simp_all)
apply (drule sorted_spvec_cons3)
apply (simp)
apply (case_tac brr)
apply (simp_all)
apply (drule sorted_spvec_cons3)
apply (simp)
done
lemma sorted_spvec_add_spmat[rule_format]: "sorted_spvec A \<longrightarrow> sorted_spvec B \<longrightarrow> sorted_spvec (add_spmat (A, B))"
apply (rule add_spmat.induct[of _ A B])
apply (simp_all)
apply (rule conjI)
apply (intro strip)
apply (simp)
apply (frule_tac as=bs in sorted_spvec_cons1)
apply (simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (simp add: sorted_add_spmat_helper2)
apply (clarify)
apply (rule conjI)
apply (case_tac "a=aa")
apply (simp)
apply (clarify)
apply (frule_tac as=as in sorted_spvec_cons1, simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (simp add: sorted_add_spmat_helper2 add_spmat_commute)
apply (case_tac "a=aa")
apply (simp_all)
apply (clarify)
apply (frule_tac as=as in sorted_spvec_cons1)
apply (frule_tac as=bs in sorted_spvec_cons1)
apply (simp)
apply (subst sorted_spvec_step)
apply (simp split: list.split)
apply (clarify, simp)
apply (drule_tac sorted_add_spmat_helper)
apply (auto)
apply (case_tac as)
apply (simp_all)
apply (drule sorted_spvec_cons3)
apply (simp)
apply (case_tac bs)
apply (simp_all)
apply (drule sorted_spvec_cons3)
apply (simp)
done
lemma sorted_spmat_add_spmat[rule_format]: "sorted_spmat A \<longrightarrow> sorted_spmat B \<longrightarrow> sorted_spmat (add_spmat (A, B))"
apply (rule add_spmat.induct[of _ A B])
apply (simp_all add: sorted_spvec_add_spvec)
done
consts
le_spvec :: "('a::lordered_ab_group_add) spvec * 'a spvec \<Rightarrow> bool"
le_spmat :: "('a::lordered_ab_group_add) spmat * 'a spmat \<Rightarrow> bool"
recdef le_spvec "measure (% (a,b). (length a) + (length b))"
"le_spvec ([], []) = True"
"le_spvec (a#as, []) = ((snd a <= 0) & (le_spvec (as, [])))"
"le_spvec ([], b#bs) = ((0 <= snd b) & (le_spvec ([], bs)))"
"le_spvec (a#as, b#bs) = (
if (fst a < fst b) then
((snd a <= 0) & (le_spvec (as, b#bs)))
else (if (fst b < fst a) then
((0 <= snd b) & (le_spvec (a#as, bs)))
else
((snd a <= snd b) & (le_spvec (as, bs)))))"
recdef le_spmat "measure (% (a,b). (length a) + (length b))"
"le_spmat ([], []) = True"
"le_spmat (a#as, []) = (le_spvec (snd a, []) & (le_spmat (as, [])))"
"le_spmat ([], b#bs) = (le_spvec ([], snd b) & (le_spmat ([], bs)))"
"le_spmat (a#as, b#bs) = (
if fst a < fst b then
(le_spvec(snd a,[]) & le_spmat(as, b#bs))
else (if (fst b < fst a) then
(le_spvec([], snd b) & le_spmat(a#as, bs))
else
(le_spvec(snd a, snd b) & le_spmat (as, bs))))"
constdefs
disj_matrices :: "('a::zero) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
"disj_matrices A B == (! j i. (Rep_matrix A j i \<noteq> 0) \<longrightarrow> (Rep_matrix B j i = 0)) & (! j i. (Rep_matrix B j i \<noteq> 0) \<longrightarrow> (Rep_matrix A j i = 0))"
declare [[simp_depth_limit = 6]]
lemma disj_matrices_contr1: "disj_matrices A B \<Longrightarrow> Rep_matrix A j i \<noteq> 0 \<Longrightarrow> Rep_matrix B j i = 0"
by (simp add: disj_matrices_def)
lemma disj_matrices_contr2: "disj_matrices A B \<Longrightarrow> Rep_matrix B j i \<noteq> 0 \<Longrightarrow> Rep_matrix A j i = 0"
by (simp add: disj_matrices_def)
lemma disj_matrices_add: "disj_matrices A B \<Longrightarrow> disj_matrices C D \<Longrightarrow> disj_matrices A D \<Longrightarrow> disj_matrices B C \<Longrightarrow>
(A + B <= C + D) = (A <= C & B <= (D::('a::lordered_ab_group_add) matrix))"
apply (auto)
apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
apply (intro strip)
apply (erule conjE)+
apply (drule_tac j=j and i=i in spec2)+
apply (case_tac "Rep_matrix B j i = 0")
apply (case_tac "Rep_matrix D j i = 0")
apply (simp_all)
apply (simp (no_asm_use) only: le_matrix_def disj_matrices_def)
apply (intro strip)
apply (erule conjE)+
apply (drule_tac j=j and i=i in spec2)+
apply (case_tac "Rep_matrix A j i = 0")
apply (case_tac "Rep_matrix C j i = 0")
apply (simp_all)
apply (erule add_mono)
apply (assumption)
done
lemma disj_matrices_zero1[simp]: "disj_matrices 0 B"
by (simp add: disj_matrices_def)
lemma disj_matrices_zero2[simp]: "disj_matrices A 0"
by (simp add: disj_matrices_def)
lemma disj_matrices_commute: "disj_matrices A B = disj_matrices B A"
by (auto simp add: disj_matrices_def)
lemma disj_matrices_add_le_zero: "disj_matrices A B \<Longrightarrow>
(A + B <= 0) = (A <= 0 & (B::('a::lordered_ab_group_add) matrix) <= 0)"
by (rule disj_matrices_add[of A B 0 0, simplified])
lemma disj_matrices_add_zero_le: "disj_matrices A B \<Longrightarrow>
(0 <= A + B) = (0 <= A & 0 <= (B::('a::lordered_ab_group_add) matrix))"
by (rule disj_matrices_add[of 0 0 A B, simplified])
lemma disj_matrices_add_x_le: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow>
(A <= B + C) = (A <= C & 0 <= (B::('a::lordered_ab_group_add) matrix))"
by (auto simp add: disj_matrices_add[of 0 A B C, simplified])
lemma disj_matrices_add_le_x: "disj_matrices A B \<Longrightarrow> disj_matrices B C \<Longrightarrow>
(B + A <= C) = (A <= C & (B::('a::lordered_ab_group_add) matrix) <= 0)"
by (auto simp add: disj_matrices_add[of B A 0 C,simplified] disj_matrices_commute)
lemma disj_sparse_row_singleton: "i <= j \<Longrightarrow> sorted_spvec((j,y)#v) \<Longrightarrow> disj_matrices (sparse_row_vector v) (singleton_matrix 0 i x)"
apply (simp add: disj_matrices_def)
apply (rule conjI)
apply (rule neg_imp)
apply (simp)
apply (intro strip)
apply (rule sorted_sparse_row_vector_zero)
apply (simp_all)
apply (intro strip)
apply (rule sorted_sparse_row_vector_zero)
apply (simp_all)
done
lemma disj_matrices_x_add: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (A::('a::lordered_ab_group_add) matrix) (B+C)"
apply (simp add: disj_matrices_def)
apply (auto)
apply (drule_tac j=j and i=i in spec2)+
apply (case_tac "Rep_matrix B j i = 0")
apply (case_tac "Rep_matrix C j i = 0")
apply (simp_all)
done
lemma disj_matrices_add_x: "disj_matrices A B \<Longrightarrow> disj_matrices A C \<Longrightarrow> disj_matrices (B+C) (A::('a::lordered_ab_group_add) matrix)"
by (simp add: disj_matrices_x_add disj_matrices_commute)
lemma disj_singleton_matrices[simp]: "disj_matrices (singleton_matrix j i x) (singleton_matrix u v y) = (j \<noteq> u | i \<noteq> v | x = 0 | y = 0)"
by (auto simp add: disj_matrices_def)
lemma disj_move_sparse_vec_mat[simplified disj_matrices_commute]:
"j <= a \<Longrightarrow> sorted_spvec((a,c)#as) \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector b) (int j) i) (sparse_row_matrix as)"
apply (auto simp add: neg_def disj_matrices_def)
apply (drule nrows_notzero)
apply (drule less_le_trans[OF _ nrows_spvec])
apply (subgoal_tac "ja = j")
apply (simp add: sorted_sparse_row_matrix_zero)
apply (arith)
apply (rule nrows)
apply (rule order_trans[of _ 1 _])
apply (simp)
apply (case_tac "nat (int ja - int j) = 0")
apply (case_tac "ja = j")
apply (simp add: sorted_sparse_row_matrix_zero)
apply arith+
done
lemma disj_move_sparse_row_vector_twice:
"j \<noteq> u \<Longrightarrow> disj_matrices (move_matrix (sparse_row_vector a) j i) (move_matrix (sparse_row_vector b) u v)"
apply (auto simp add: neg_def disj_matrices_def)
apply (rule nrows, rule order_trans[of _ 1], simp, drule nrows_notzero, drule less_le_trans[OF _ nrows_spvec], arith)+
done
lemma le_spvec_iff_sparse_row_le[rule_format]: "(sorted_spvec a) \<longrightarrow> (sorted_spvec b) \<longrightarrow> (le_spvec (a,b)) = (sparse_row_vector a <= sparse_row_vector b)"
apply (rule le_spvec.induct)
apply (simp_all add: sorted_spvec_cons1 disj_matrices_add_le_zero disj_matrices_add_zero_le
disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
apply (rule conjI, intro strip)
apply (simp add: sorted_spvec_cons1)
apply (subst disj_matrices_add_x_le)
apply (simp add: disj_sparse_row_singleton[OF less_imp_le] disj_matrices_x_add disj_matrices_commute)
apply (simp add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
apply (simp, blast)
apply (intro strip, rule conjI, intro strip)
apply (simp add: sorted_spvec_cons1)
apply (subst disj_matrices_add_le_x)
apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_sparse_row_singleton[OF less_imp_le] disj_matrices_commute disj_matrices_x_add)
apply (blast)
apply (intro strip)
apply (simp add: sorted_spvec_cons1)
apply (case_tac "a=aa", simp_all)
apply (subst disj_matrices_add)
apply (simp_all add: disj_sparse_row_singleton[OF order_refl] disj_matrices_commute)
done
lemma le_spvec_empty2_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec (b,[]) = (sparse_row_vector b <= 0))"
apply (induct b)
apply (simp_all add: sorted_spvec_cons1)
apply (intro strip)
apply (subst disj_matrices_add_le_zero)
apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
apply (simp_all)
done
lemma le_spvec_empty1_sparse_row[rule_format]: "(sorted_spvec b) \<longrightarrow> (le_spvec ([],b) = (0 <= sparse_row_vector b))"
apply (induct b)
apply (simp_all add: sorted_spvec_cons1)
apply (intro strip)
apply (subst disj_matrices_add_zero_le)
apply (simp add: disj_matrices_commute disj_sparse_row_singleton sorted_spvec_cons1)
apply (rule_tac y = "snd a" in disj_sparse_row_singleton[OF order_refl])
apply (simp_all)
done
lemma le_spmat_iff_sparse_row_le[rule_format]: "(sorted_spvec A) \<longrightarrow> (sorted_spmat A) \<longrightarrow> (sorted_spvec B) \<longrightarrow> (sorted_spmat B) \<longrightarrow>
le_spmat(A, B) = (sparse_row_matrix A <= sparse_row_matrix B)"
apply (rule le_spmat.induct)
apply (simp add: sparse_row_matrix_cons disj_matrices_add_le_zero disj_matrices_add_zero_le disj_move_sparse_vec_mat[OF order_refl]
disj_matrices_commute sorted_spvec_cons1 le_spvec_empty2_sparse_row le_spvec_empty1_sparse_row)+
apply (rule conjI, intro strip)
apply (simp add: sorted_spvec_cons1)
apply (subst disj_matrices_add_x_le)
apply (rule disj_matrices_add_x)
apply (simp add: disj_move_sparse_row_vector_twice)
apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
apply (simp add: disj_move_sparse_vec_mat[OF order_refl] disj_matrices_commute)
apply (simp, blast)
apply (intro strip, rule conjI, intro strip)
apply (simp add: sorted_spvec_cons1)
apply (subst disj_matrices_add_le_x)
apply (simp add: disj_move_sparse_vec_mat[OF order_refl])
apply (rule disj_matrices_x_add)
apply (simp add: disj_move_sparse_row_vector_twice)
apply (simp add: disj_move_sparse_vec_mat[OF less_imp_le] disj_matrices_commute)
apply (simp, blast)
apply (intro strip)
apply (case_tac "a=aa")
apply (simp_all)
apply (subst disj_matrices_add)
apply (simp_all add: disj_matrices_commute disj_move_sparse_vec_mat[OF order_refl])
apply (simp add: sorted_spvec_cons1 le_spvec_iff_sparse_row_le)
done
declare [[simp_depth_limit = 999]]
consts
abs_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat"
minus_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat"
primrec
"abs_spmat [] = []"
"abs_spmat (a#as) = (fst a, abs_spvec (snd a))#(abs_spmat as)"
primrec
"minus_spmat [] = []"
"minus_spmat (a#as) = (fst a, minus_spvec (snd a))#(minus_spmat as)"
lemma sparse_row_matrix_minus:
"sparse_row_matrix (minus_spmat A) = - (sparse_row_matrix A)"
apply (induct A)
apply (simp_all add: sparse_row_vector_minus sparse_row_matrix_cons)
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
done
lemma Rep_sparse_row_vector_zero: "x \<noteq> 0 \<Longrightarrow> Rep_matrix (sparse_row_vector v) x y = 0"
proof -
assume x:"x \<noteq> 0"
have r:"nrows (sparse_row_vector v) <= Suc 0" by (rule nrows_spvec)
show ?thesis
apply (rule nrows)
apply (subgoal_tac "Suc 0 <= x")
apply (insert r)
apply (simp only:)
apply (insert x)
apply arith
done
qed
lemma sparse_row_matrix_abs:
"sorted_spvec A \<Longrightarrow> sorted_spmat A \<Longrightarrow> sparse_row_matrix (abs_spmat A) = abs (sparse_row_matrix A)"
apply (induct A)
apply (simp_all add: sparse_row_vector_abs sparse_row_matrix_cons)
apply (frule_tac sorted_spvec_cons1, simp)
apply (simplesubst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply auto
apply (case_tac "x=a")
apply (simp)
apply (simplesubst sorted_sparse_row_matrix_zero)
apply auto
apply (simplesubst Rep_sparse_row_vector_zero)
apply (simp_all add: neg_def)
done
lemma sorted_spvec_minus_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (minus_spmat A)"
apply (induct A)
apply (simp)
apply (frule sorted_spvec_cons1, simp)
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spvec_abs_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec (abs_spmat A)"
apply (induct A)
apply (simp)
apply (frule sorted_spvec_cons1, simp)
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spmat_minus_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (minus_spmat A)"
apply (induct A)
apply (simp_all add: sorted_spvec_minus_spvec)
done
lemma sorted_spmat_abs_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat (abs_spmat A)"
apply (induct A)
apply (simp_all add: sorted_spvec_abs_spvec)
done
constdefs
diff_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
"diff_spmat A B == add_spmat (A, minus_spmat B)"
lemma sorted_spmat_diff_spmat: "sorted_spmat A \<Longrightarrow> sorted_spmat B \<Longrightarrow> sorted_spmat (diff_spmat A B)"
by (simp add: diff_spmat_def sorted_spmat_minus_spmat sorted_spmat_add_spmat)
lemma sorted_spvec_diff_spmat: "sorted_spvec A \<Longrightarrow> sorted_spvec B \<Longrightarrow> sorted_spvec (diff_spmat A B)"
by (simp add: diff_spmat_def sorted_spvec_minus_spmat sorted_spvec_add_spmat)
lemma sparse_row_diff_spmat: "sparse_row_matrix (diff_spmat A B ) = (sparse_row_matrix A) - (sparse_row_matrix B)"
by (simp add: diff_spmat_def sparse_row_add_spmat sparse_row_matrix_minus)
constdefs
sorted_sparse_matrix :: "'a spmat \<Rightarrow> bool"
"sorted_sparse_matrix A == (sorted_spvec A) & (sorted_spmat A)"
lemma sorted_sparse_matrix_imp_spvec: "sorted_sparse_matrix A \<Longrightarrow> sorted_spvec A"
by (simp add: sorted_sparse_matrix_def)
lemma sorted_sparse_matrix_imp_spmat: "sorted_sparse_matrix A \<Longrightarrow> sorted_spmat A"
by (simp add: sorted_sparse_matrix_def)
lemmas sorted_sp_simps =
sorted_spvec.simps
sorted_spmat.simps
sorted_sparse_matrix_def
lemma bool1: "(\<not> True) = False" by blast
lemma bool2: "(\<not> False) = True" by blast
lemma bool3: "((P\<Colon>bool) \<and> True) = P" by blast
lemma bool4: "(True \<and> (P\<Colon>bool)) = P" by blast
lemma bool5: "((P\<Colon>bool) \<and> False) = False" by blast
lemma bool6: "(False \<and> (P\<Colon>bool)) = False" by blast
lemma bool7: "((P\<Colon>bool) \<or> True) = True" by blast
lemma bool8: "(True \<or> (P\<Colon>bool)) = True" by blast
lemma bool9: "((P\<Colon>bool) \<or> False) = P" by blast
lemma bool10: "(False \<or> (P\<Colon>bool)) = P" by blast
lemmas boolarith = bool1 bool2 bool3 bool4 bool5 bool6 bool7 bool8 bool9 bool10
lemma if_case_eq: "(if b then x else y) = (case b of True => x | False => y)" by simp
consts
pprt_spvec :: "('a::{lordered_ab_group_add}) spvec \<Rightarrow> 'a spvec"
nprt_spvec :: "('a::{lordered_ab_group_add}) spvec \<Rightarrow> 'a spvec"
pprt_spmat :: "('a::{lordered_ab_group_add}) spmat \<Rightarrow> 'a spmat"
nprt_spmat :: "('a::{lordered_ab_group_add}) spmat \<Rightarrow> 'a spmat"
primrec
"pprt_spvec [] = []"
"pprt_spvec (a#as) = (fst a, pprt (snd a)) # (pprt_spvec as)"
primrec
"nprt_spvec [] = []"
"nprt_spvec (a#as) = (fst a, nprt (snd a)) # (nprt_spvec as)"
primrec
"pprt_spmat [] = []"
"pprt_spmat (a#as) = (fst a, pprt_spvec (snd a))#(pprt_spmat as)"
(*case (pprt_spvec (snd a)) of [] \<Rightarrow> (pprt_spmat as) | y#ys \<Rightarrow> (fst a, y#ys)#(pprt_spmat as))"*)
primrec
"nprt_spmat [] = []"
"nprt_spmat (a#as) = (fst a, nprt_spvec (snd a))#(nprt_spmat as)"
(*case (nprt_spvec (snd a)) of [] \<Rightarrow> (nprt_spmat as) | y#ys \<Rightarrow> (fst a, y#ys)#(nprt_spmat as))"*)
lemma pprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) \<Longrightarrow> pprt (A+B) = pprt A + pprt B"
apply (simp add: pprt_def sup_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
apply (case_tac "Rep_matrix A x xa \<noteq> 0")
apply (simp_all add: disj_matrices_contr1)
done
lemma nprt_add: "disj_matrices A (B::(_::lordered_ring) matrix) \<Longrightarrow> nprt (A+B) = nprt A + nprt B"
apply (simp add: nprt_def inf_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
apply (case_tac "Rep_matrix A x xa \<noteq> 0")
apply (simp_all add: disj_matrices_contr1)
done
lemma pprt_singleton[simp]: "pprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (pprt x)"
apply (simp add: pprt_def sup_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
done
lemma nprt_singleton[simp]: "nprt (singleton_matrix j i (x::_::lordered_ring)) = singleton_matrix j i (nprt x)"
apply (simp add: nprt_def inf_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply simp
done
lemma less_imp_le: "a < b \<Longrightarrow> a <= (b::_::order)" by (simp add: less_def)
lemma sparse_row_vector_pprt: "sorted_spvec v \<Longrightarrow> sparse_row_vector (pprt_spvec v) = pprt (sparse_row_vector v)"
apply (induct v)
apply (simp_all)
apply (frule sorted_spvec_cons1, auto)
apply (subst pprt_add)
apply (subst disj_matrices_commute)
apply (rule disj_sparse_row_singleton)
apply auto
done
lemma sparse_row_vector_nprt: "sorted_spvec v \<Longrightarrow> sparse_row_vector (nprt_spvec v) = nprt (sparse_row_vector v)"
apply (induct v)
apply (simp_all)
apply (frule sorted_spvec_cons1, auto)
apply (subst nprt_add)
apply (subst disj_matrices_commute)
apply (rule disj_sparse_row_singleton)
apply auto
done
lemma pprt_move_matrix: "pprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (pprt A) j i"
apply (simp add: pprt_def)
apply (simp add: sup_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
done
lemma nprt_move_matrix: "nprt (move_matrix (A::('a::lordered_ring) matrix) j i) = move_matrix (nprt A) j i"
apply (simp add: nprt_def)
apply (simp add: inf_matrix_def)
apply (simp add: Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
done
lemma sparse_row_matrix_pprt: "sorted_spvec m \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (pprt_spmat m) = pprt (sparse_row_matrix m)"
apply (induct m)
apply simp
apply simp
apply (frule sorted_spvec_cons1)
apply (simp add: sparse_row_matrix_cons sparse_row_vector_pprt)
apply (subst pprt_add)
apply (subst disj_matrices_commute)
apply (rule disj_move_sparse_vec_mat)
apply auto
apply (simp add: sorted_spvec.simps)
apply (simp split: list.split)
apply auto
apply (simp add: pprt_move_matrix)
done
lemma sparse_row_matrix_nprt: "sorted_spvec m \<Longrightarrow> sorted_spmat m \<Longrightarrow> sparse_row_matrix (nprt_spmat m) = nprt (sparse_row_matrix m)"
apply (induct m)
apply simp
apply simp
apply (frule sorted_spvec_cons1)
apply (simp add: sparse_row_matrix_cons sparse_row_vector_nprt)
apply (subst nprt_add)
apply (subst disj_matrices_commute)
apply (rule disj_move_sparse_vec_mat)
apply auto
apply (simp add: sorted_spvec.simps)
apply (simp split: list.split)
apply auto
apply (simp add: nprt_move_matrix)
done
lemma sorted_pprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (pprt_spvec v)"
apply (induct v)
apply (simp)
apply (frule sorted_spvec_cons1)
apply simp
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_nprt_spvec: "sorted_spvec v \<Longrightarrow> sorted_spvec (nprt_spvec v)"
apply (induct v)
apply (simp)
apply (frule sorted_spvec_cons1)
apply simp
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spvec_pprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (pprt_spmat m)"
apply (induct m)
apply (simp)
apply (frule sorted_spvec_cons1)
apply simp
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spvec_nprt_spmat: "sorted_spvec m \<Longrightarrow> sorted_spvec (nprt_spmat m)"
apply (induct m)
apply (simp)
apply (frule sorted_spvec_cons1)
apply simp
apply (simp add: sorted_spvec.simps split:list.split_asm)
done
lemma sorted_spmat_pprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (pprt_spmat m)"
apply (induct m)
apply (simp_all add: sorted_pprt_spvec)
done
lemma sorted_spmat_nprt_spmat: "sorted_spmat m \<Longrightarrow> sorted_spmat (nprt_spmat m)"
apply (induct m)
apply (simp_all add: sorted_nprt_spvec)
done
constdefs
mult_est_spmat :: "('a::lordered_ring) spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat \<Rightarrow> 'a spmat"
"mult_est_spmat r1 r2 s1 s2 ==
add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2),
add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1))))"
lemmas sparse_row_matrix_op_simps =
sorted_sparse_matrix_imp_spmat sorted_sparse_matrix_imp_spvec
sparse_row_add_spmat sorted_spvec_add_spmat sorted_spmat_add_spmat
sparse_row_diff_spmat sorted_spvec_diff_spmat sorted_spmat_diff_spmat
sparse_row_matrix_minus sorted_spvec_minus_spmat sorted_spmat_minus_spmat
sparse_row_mult_spmat sorted_spvec_mult_spmat sorted_spmat_mult_spmat
sparse_row_matrix_abs sorted_spvec_abs_spmat sorted_spmat_abs_spmat
le_spmat_iff_sparse_row_le
sparse_row_matrix_pprt sorted_spvec_pprt_spmat sorted_spmat_pprt_spmat
sparse_row_matrix_nprt sorted_spvec_nprt_spmat sorted_spmat_nprt_spmat
lemma zero_eq_Numeral0: "(0::_::number_ring) = Numeral0" by simp
lemmas sparse_row_matrix_arith_simps[simplified zero_eq_Numeral0] =
mult_spmat.simps mult_spvec_spmat.simps
addmult_spvec.simps
smult_spvec_empty smult_spvec_cons
add_spmat.simps add_spvec.simps
minus_spmat.simps minus_spvec.simps
abs_spmat.simps abs_spvec.simps
diff_spmat_def
le_spmat.simps le_spvec.simps
pprt_spmat.simps pprt_spvec.simps
nprt_spmat.simps nprt_spvec.simps
mult_est_spmat_def
(*lemma spm_linprog_dual_estimate_1:
assumes
"sorted_sparse_matrix A1"
"sorted_sparse_matrix A2"
"sorted_sparse_matrix c1"
"sorted_sparse_matrix c2"
"sorted_sparse_matrix y"
"sorted_spvec b"
"sorted_spvec r"
"le_spmat ([], y)"
"A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
"sparse_row_matrix A1 <= A"
"A <= sparse_row_matrix A2"
"sparse_row_matrix c1 <= c"
"c <= sparse_row_matrix c2"
"abs x \<le> sparse_row_matrix r"
shows
"c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b, mult_spmat (add_spmat (add_spmat (mult_spmat y (diff_spmat A2 A1),
abs_spmat (diff_spmat (mult_spmat y A1) c1)), diff_spmat c2 c1)) r))"
by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A])
*)
end