(* Title: ZF/Resid/Confluence.thy
Author: Ole Rasmussen
Copyright 1995 University of Cambridge
*)
theory Confluence imports Reduction begin
definition
confluence :: "i=>o" where
"confluence(R) ==
\<forall>x y. <x,y> \<in> R \<longrightarrow> (\<forall>z.<x,z> \<in> R \<longrightarrow> (\<exists>u.<y,u> \<in> R & <z,u> \<in> R))"
definition
strip :: "o" where
"strip == \<forall>x y. (x ===> y) \<longrightarrow>
(\<forall>z.(x =1=> z) \<longrightarrow> (\<exists>u.(y =1=> u) & (z===>u)))"
(* ------------------------------------------------------------------------- *)
(* strip lemmas *)
(* ------------------------------------------------------------------------- *)
lemma strip_lemma_r:
"[|confluence(Spar_red1)|]==> strip"
apply (unfold confluence_def strip_def)
apply (rule impI [THEN allI, THEN allI])
apply (erule Spar_red.induct, fast)
apply (fast intro: Spar_red.trans)
done
lemma strip_lemma_l:
"strip==> confluence(Spar_red)"
apply (unfold confluence_def strip_def)
apply (rule impI [THEN allI, THEN allI])
apply (erule Spar_red.induct, blast)
apply clarify
apply (blast intro: Spar_red.trans)
done
(* ------------------------------------------------------------------------- *)
(* Confluence *)
(* ------------------------------------------------------------------------- *)
lemma parallel_moves: "confluence(Spar_red1)"
apply (unfold confluence_def, clarify)
apply (frule simulation)
apply (frule_tac n = z in simulation, clarify)
apply (frule_tac v = va in paving)
apply (force intro: completeness)+
done
lemmas confluence_parallel_reduction =
parallel_moves [THEN strip_lemma_r, THEN strip_lemma_l]
lemma lemma1: "[|confluence(Spar_red)|]==> confluence(Sred)"
by (unfold confluence_def, blast intro: par_red_red red_par_red)
lemmas confluence_beta_reduction =
confluence_parallel_reduction [THEN lemma1]
(**** Conversion ****)
consts
Sconv1 :: "i"
Sconv :: "i"
abbreviation
Sconv1_rel (infixl "<-1->" 50) where
"a<-1->b == <a,b> \<in> Sconv1"
abbreviation
Sconv_rel (infixl "<-\<longrightarrow>" 50) where
"a<-\<longrightarrow>b == <a,b> \<in> Sconv"
inductive
domains "Sconv1" \<subseteq> "lambda*lambda"
intros
red1: "m -1-> n ==> m<-1->n"
expl: "n -1-> m ==> m<-1->n"
type_intros red1D1 red1D2 lambda.intros bool_typechecks
declare Sconv1.intros [intro]
inductive
domains "Sconv" \<subseteq> "lambda*lambda"
intros
one_step: "m<-1->n ==> m<-\<longrightarrow>n"
refl: "m \<in> lambda ==> m<-\<longrightarrow>m"
trans: "[|m<-\<longrightarrow>n; n<-\<longrightarrow>p|] ==> m<-\<longrightarrow>p"
type_intros Sconv1.dom_subset [THEN subsetD] lambda.intros bool_typechecks
declare Sconv.intros [intro]
lemma conv_sym: "m<-\<longrightarrow>n ==> n<-\<longrightarrow>m"
apply (erule Sconv.induct)
apply (erule Sconv1.induct, blast+)
done
(* ------------------------------------------------------------------------- *)
(* Church_Rosser Theorem *)
(* ------------------------------------------------------------------------- *)
lemma Church_Rosser: "m<-\<longrightarrow>n ==> \<exists>p.(m -\<longrightarrow>p) & (n -\<longrightarrow> p)"
apply (erule Sconv.induct)
apply (erule Sconv1.induct)
apply (blast intro: red1D1 redD2)
apply (blast intro: red1D1 redD2)
apply (blast intro: red1D1 redD2)
apply (cut_tac confluence_beta_reduction)
apply (unfold confluence_def)
apply (blast intro: Sred.trans)
done
end