(* Title: HOL/Tools/Int.ML
ID: $Id$
Author: Makarius
Logical operations on numerals (see also HOL/hologic.ML).
*)
signature NUMERAL =
sig
val mk_cnumeral: int -> cterm
val mk_cnumber: ctyp -> int -> cterm
val add_code: string -> bool -> bool -> string -> theory -> theory
end;
structure Numeral: NUMERAL =
struct
(* numeral *)
fun mk_cbit 0 = @{cterm "Int.bit.B0"}
| mk_cbit 1 = @{cterm "Int.bit.B1"}
| mk_cbit _ = raise CTERM ("mk_cbit", []);
fun mk_cnumeral 0 = @{cterm "Int.Pls"}
| mk_cnumeral ~1 = @{cterm "Int.Min"}
| mk_cnumeral i =
let val (q, r) = Integer.div_mod i 2 in
Thm.capply (Thm.capply @{cterm "Int.Bit"} (mk_cnumeral q)) (mk_cbit r)
end;
(* number *)
local
val zero = @{cpat "0"};
val zeroT = Thm.ctyp_of_term zero;
val one = @{cpat "1"};
val oneT = Thm.ctyp_of_term one;
val number_of = @{cpat "number_of"};
val numberT = Thm.ctyp_of @{theory} (Term.range_type (Thm.typ_of (Thm.ctyp_of_term number_of)));
fun instT T V = Thm.instantiate_cterm ([(V, T)], []);
in
fun mk_cnumber T 0 = instT T zeroT zero
| mk_cnumber T 1 = instT T oneT one
| mk_cnumber T i = Thm.capply (instT T numberT number_of) (mk_cnumeral i);
end;
(* code generator *)
fun add_code number_of negative unbounded target =
CodeTarget.add_pretty_numeral target negative unbounded number_of
@{const_name Int.B0} @{const_name Int.B1}
@{const_name Int.Pls} @{const_name Int.Min}
@{const_name Int.Bit};
end;