(* Title: HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
Author: Amine Chaieb
*)
section \<open>Implementation and verification of multivariate polynomials\<close>
theory Reflected_Multivariate_Polynomial
imports Complex_Main Rat_Pair Polynomial_List
begin
subsection \<open>Datatype of polynomial expressions\<close>
datatype poly = C Num | Bound nat | Add poly poly | Sub poly poly
| Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
abbreviation poly_p :: "int \<Rightarrow> poly" ("'((_)')\<^sub>p") where "(i)\<^sub>p \<equiv> C (i)\<^sub>N"
subsection\<open>Boundedness, substitution and all that\<close>
primrec polysize:: "poly \<Rightarrow> nat"
where
"polysize (C c) = 1"
| "polysize (Bound n) = 1"
| "polysize (Neg p) = 1 + polysize p"
| "polysize (Add p q) = 1 + polysize p + polysize q"
| "polysize (Sub p q) = 1 + polysize p + polysize q"
| "polysize (Mul p q) = 1 + polysize p + polysize q"
| "polysize (Pw p n) = 1 + polysize p"
| "polysize (CN c n p) = 4 + polysize c + polysize p"
primrec polybound0:: "poly \<Rightarrow> bool" \<comment> \<open>a poly is INDEPENDENT of Bound 0\<close>
where
"polybound0 (C c) \<longleftrightarrow> True"
| "polybound0 (Bound n) \<longleftrightarrow> n > 0"
| "polybound0 (Neg a) \<longleftrightarrow> polybound0 a"
| "polybound0 (Add a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b"
| "polybound0 (Sub a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b"
| "polybound0 (Mul a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b"
| "polybound0 (Pw p n) \<longleftrightarrow> polybound0 p"
| "polybound0 (CN c n p) \<longleftrightarrow> n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p"
primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" \<comment> \<open>substitute a poly into a poly for Bound 0\<close>
where
"polysubst0 t (C c) = C c"
| "polysubst0 t (Bound n) = (if n = 0 then t else Bound n)"
| "polysubst0 t (Neg a) = Neg (polysubst0 t a)"
| "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)"
| "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)"
| "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)"
| "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n"
| "polysubst0 t (CN c n p) =
(if n = 0 then Add (polysubst0 t c) (Mul t (polysubst0 t p))
else CN (polysubst0 t c) n (polysubst0 t p))"
fun decrpoly:: "poly \<Rightarrow> poly"
where
"decrpoly (Bound n) = Bound (n - 1)"
| "decrpoly (Neg a) = Neg (decrpoly a)"
| "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)"
| "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)"
| "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)"
| "decrpoly (Pw p n) = Pw (decrpoly p) n"
| "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)"
| "decrpoly a = a"
subsection \<open>Degrees and heads and coefficients\<close>
fun degree :: "poly \<Rightarrow> nat"
where
"degree (CN c 0 p) = 1 + degree p"
| "degree p = 0"
fun head :: "poly \<Rightarrow> poly"
where
"head (CN c 0 p) = head p"
| "head p = p"
text \<open>More general notions of degree and head.\<close>
fun degreen :: "poly \<Rightarrow> nat \<Rightarrow> nat"
where
"degreen (CN c n p) = (\<lambda>m. if n = m then 1 + degreen p n else 0)"
| "degreen p = (\<lambda>m. 0)"
fun headn :: "poly \<Rightarrow> nat \<Rightarrow> poly"
where
"headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)"
| "headn p = (\<lambda>m. p)"
fun coefficients :: "poly \<Rightarrow> poly list"
where
"coefficients (CN c 0 p) = c # coefficients p"
| "coefficients p = [p]"
fun isconstant :: "poly \<Rightarrow> bool"
where
"isconstant (CN c 0 p) = False"
| "isconstant p = True"
fun behead :: "poly \<Rightarrow> poly"
where
"behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')"
| "behead p = 0\<^sub>p"
fun headconst :: "poly \<Rightarrow> Num"
where
"headconst (CN c n p) = headconst p"
| "headconst (C n) = n"
subsection \<open>Operations for normalization\<close>
declare if_cong[fundef_cong del]
declare let_cong[fundef_cong del]
fun polyadd :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60)
where
"polyadd (C c) (C c') = C (c +\<^sub>N c')"
| "polyadd (C c) (CN c' n' p') = CN (polyadd (C c) c') n' p'"
| "polyadd (CN c n p) (C c') = CN (polyadd c (C c')) n p"
| "polyadd (CN c n p) (CN c' n' p') =
(if n < n' then CN (polyadd c (CN c' n' p')) n p
else if n' < n then CN (polyadd (CN c n p) c') n' p'
else
let
cc' = polyadd c c';
pp' = polyadd p p'
in if pp' = 0\<^sub>p then cc' else CN cc' n pp')"
| "polyadd a b = Add a b"
fun polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
where
"polyneg (C c) = C (~\<^sub>N c)"
| "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)"
| "polyneg a = Neg a"
definition polysub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60)
where "p -\<^sub>p q = polyadd p (polyneg q)"
fun polymul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60)
where
"polymul (C c) (C c') = C (c *\<^sub>N c')"
| "polymul (C c) (CN c' n' p') =
(if c = 0\<^sub>N then 0\<^sub>p else CN (polymul (C c) c') n' (polymul (C c) p'))"
| "polymul (CN c n p) (C c') =
(if c' = 0\<^sub>N then 0\<^sub>p else CN (polymul c (C c')) n (polymul p (C c')))"
| "polymul (CN c n p) (CN c' n' p') =
(if n < n' then CN (polymul c (CN c' n' p')) n (polymul p (CN c' n' p'))
else if n' < n then CN (polymul (CN c n p) c') n' (polymul (CN c n p) p')
else polyadd (polymul (CN c n p) c') (CN 0\<^sub>p n' (polymul (CN c n p) p')))"
| "polymul a b = Mul a b"
declare if_cong[fundef_cong]
declare let_cong[fundef_cong]
fun polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly"
where
"polypow 0 = (\<lambda>p. (1)\<^sub>p)"
| "polypow n =
(\<lambda>p.
let
q = polypow (n div 2) p;
d = polymul q q
in if even n then d else polymul p d)"
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60)
where "a ^\<^sub>p k \<equiv> polypow k a"
function polynate :: "poly \<Rightarrow> poly"
where
"polynate (Bound n) = CN 0\<^sub>p n (1)\<^sub>p"
| "polynate (Add p q) = polynate p +\<^sub>p polynate q"
| "polynate (Sub p q) = polynate p -\<^sub>p polynate q"
| "polynate (Mul p q) = polynate p *\<^sub>p polynate q"
| "polynate (Neg p) = ~\<^sub>p (polynate p)"
| "polynate (Pw p n) = polynate p ^\<^sub>p n"
| "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))"
| "polynate (C c) = C (normNum c)"
by pat_completeness auto
termination by (relation "measure polysize") auto
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly"
where
"poly_cmul y (C x) = C (y *\<^sub>N x)"
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
| "poly_cmul y p = C y *\<^sub>p p"
definition monic :: "poly \<Rightarrow> poly \<times> bool"
where "monic p =
(let h = headconst p
in if h = 0\<^sub>N then (p, False) else (C (Ninv h) *\<^sub>p p, 0>\<^sub>N h))"
subsection \<open>Pseudo-division\<close>
definition shift1 :: "poly \<Rightarrow> poly"
where "shift1 p = CN 0\<^sub>p 0 p"
abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
where "funpow \<equiv> compow"
partial_function (tailrec) polydivide_aux :: "poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<times> poly"
where
"polydivide_aux a n p k s =
(if s = 0\<^sub>p then (k, s)
else
let
b = head s;
m = degree s
in
if m < n then (k,s)
else
let p' = funpow (m - n) shift1 p
in
if a = b then polydivide_aux a n p k (s -\<^sub>p p')
else polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))"
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> nat \<times> poly"
where "polydivide s p = polydivide_aux (head p) (degree p) p 0 s"
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly"
where
"poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)"
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p"
fun poly_deriv :: "poly \<Rightarrow> poly"
where
"poly_deriv (CN c 0 p) = poly_deriv_aux 1 p"
| "poly_deriv p = 0\<^sub>p"
subsection \<open>Semantics of the polynomial representation\<close>
primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0,power}"
where
"Ipoly bs (C c) = INum c"
| "Ipoly bs (Bound n) = bs!n"
| "Ipoly bs (Neg a) = - Ipoly bs a"
| "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b"
| "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b"
| "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b"
| "Ipoly bs (Pw t n) = Ipoly bs t ^ n"
| "Ipoly bs (CN c n p) = Ipoly bs c + (bs!n) * Ipoly bs p"
abbreviation Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0,power}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p"
lemma Ipoly_CInt: "Ipoly bs (C (i, 1)) = of_int i"
by (simp add: INum_def)
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j"
by (simp add: INum_def)
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat
subsection \<open>Normal form and normalization\<close>
fun isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool"
where
"isnpolyh (C c) = (\<lambda>k. isnormNum c)"
| "isnpolyh (CN c n p) = (\<lambda>k. n \<ge> k \<and> isnpolyh c (Suc n) \<and> isnpolyh p n \<and> p \<noteq> 0\<^sub>p)"
| "isnpolyh p = (\<lambda>k. False)"
lemma isnpolyh_mono: "n' \<le> n \<Longrightarrow> isnpolyh p n \<Longrightarrow> isnpolyh p n'"
by (induct p rule: isnpolyh.induct) auto
definition isnpoly :: "poly \<Rightarrow> bool"
where "isnpoly p = isnpolyh p 0"
text \<open>polyadd preserves normal forms\<close>
lemma polyadd_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polyadd p q) (min n0 n1)"
proof (induct p q arbitrary: n0 n1 rule: polyadd.induct)
case (2 ab c' n' p' n0 n1)
from 2 have th1: "isnpolyh (C ab) (Suc n')"
by simp
from 2(3) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1"
by simp_all
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')"
by simp
with 2(1)[OF th1 th2] have th3:"isnpolyh (C ab +\<^sub>p c') (Suc n')"
by simp
from nplen1 have n01len1: "min n0 n1 \<le> n'"
by simp
then show ?case using 2 th3
by simp
next
case (3 c' n' p' ab n1 n0)
from 3 have th1: "isnpolyh (C ab) (Suc n')"
by simp
from 3(2) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1"
by simp_all
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')"
by simp
with 3(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C ab) (Suc n')"
by simp
from nplen1 have n01len1: "min n0 n1 \<le> n'"
by simp
then show ?case using 3 th3
by simp
next
case (4 c n p c' n' p' n0 n1)
then have nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n"
by simp_all
from 4 have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'"
by simp_all
from 4 have ngen0: "n \<ge> n0"
by simp
from 4 have n'gen1: "n' \<ge> n1"
by simp
consider (eq) "n = n'" | (lt) "n < n'" | (gt) "n > n'"
by arith
then show ?case
proof cases
case eq
with "4.hyps"(3)[OF nc nc']
have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)"
by auto
then have ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)"
using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1
by auto
from eq "4.hyps"(4)[OF np np'] have npp': "isnpolyh (p +\<^sub>p p') n"
by simp
have minle: "min n0 n1 \<le> n'"
using ngen0 n'gen1 eq by simp
from minle npp' ncc'n01 4 eq ngen0 n'gen1 ncc' show ?thesis
by (simp add: Let_def)
next
case lt
have "min n0 n1 \<le> n0"
by simp
with 4 lt have th1:"min n0 n1 \<le> n"
by auto
from 4 have th21: "isnpolyh c (Suc n)"
by simp
from 4 have th22: "isnpolyh (CN c' n' p') n'"
by simp
from lt have th23: "min (Suc n) n' = Suc n"
by arith
from "4.hyps"(1)[OF th21 th22] have "isnpolyh (polyadd c (CN c' n' p')) (Suc n)"
using th23 by simp
with 4 lt th1 show ?thesis
by simp
next
case gt
then have gt': "n' < n \<and> \<not> n < n'"
by simp
have "min n0 n1 \<le> n1"
by simp
with 4 gt have th1: "min n0 n1 \<le> n'"
by auto
from 4 have th21: "isnpolyh c' (Suc n')"
by simp_all
from 4 have th22: "isnpolyh (CN c n p) n"
by simp
from gt have th23: "min n (Suc n') = Suc n'"
by arith
from "4.hyps"(2)[OF th22 th21] have "isnpolyh (polyadd (CN c n p) c') (Suc n')"
using th23 by simp
with 4 gt th1 show ?thesis
by simp
qed
qed auto
lemma polyadd[simp]: "Ipoly bs (polyadd p q) = Ipoly bs p + Ipoly bs q"
by (induct p q rule: polyadd.induct)
(auto simp add: Let_def field_simps distrib_left[symmetric] simp del: distrib_left_NO_MATCH)
lemma polyadd_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polyadd p q)"
using polyadd_normh[of p 0 q 0] isnpoly_def by simp
text \<open>The degree of addition and other general lemmas needed for the normal form of polymul.\<close>
lemma polyadd_different_degreen:
assumes "isnpolyh p n0"
and "isnpolyh q n1"
and "degreen p m \<noteq> degreen q m"
and "m \<le> min n0 n1"
shows "degreen (polyadd p q) m = max (degreen p m) (degreen q m)"
using assms
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct)
case (4 c n p c' n' p' m n0 n1)
show ?case
proof (cases "n = n'")
case True
with 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7)
show ?thesis by (auto simp: Let_def)
next
case False
with 4 show ?thesis by auto
qed
qed auto
lemma headnz[simp]: "isnpolyh p n \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> headn p m \<noteq> 0\<^sub>p"
by (induct p arbitrary: n rule: headn.induct) auto
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0"
by (induct p arbitrary: n rule: degree.induct) auto
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0"
by (induct p arbitrary: n rule: degreen.induct) auto
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0"
by (induct p arbitrary: n rule: degree.induct) auto
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0"
using degree_isnpolyh_Suc by auto
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0"
using degreen_0 by auto
lemma degreen_polyadd:
assumes np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
and m: "m \<le> max n0 n1"
shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)"
using np nq m
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct)
case (2 c c' n' p' n0 n1)
then show ?case
by (cases n') simp_all
next
case (3 c n p c' n0 n1)
then show ?case
by (cases n) auto
next
case (4 c n p c' n' p' n0 n1 m)
show ?case
proof (cases "n = n'")
case True
with 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7)
show ?thesis by (auto simp: Let_def)
next
case False
then show ?thesis by simp
qed
qed auto
lemma polyadd_eq_const_degreen:
assumes "isnpolyh p n0"
and "isnpolyh q n1"
and "polyadd p q = C c"
shows "degreen p m = degreen q m"
using assms
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct)
case (4 c n p c' n' p' m n0 n1 x)
consider "n = n'" | "n > n' \<or> n < n'" by arith
then show ?case
proof cases
case 1
with 4 show ?thesis
by (cases "p +\<^sub>p p' = 0\<^sub>p") (auto simp add: Let_def)
next
case 2
with 4 show ?thesis by auto
qed
qed simp_all
lemma polymul_properties:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
and m: "m \<le> min n0 n1"
shows "isnpolyh (p *\<^sub>p q) (min n0 n1)"
and "p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p"
and "degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)"
using np nq m
proof (induct p q arbitrary: n0 n1 m rule: polymul.induct)
case (2 c c' n' p')
{
case (1 n0 n1)
with "2.hyps"(4-6)[of n' n' n'] and "2.hyps"(1-3)[of "Suc n'" "Suc n'" n']
show ?case by (auto simp add: min_def)
next
case (2 n0 n1)
then show ?case by auto
next
case (3 n0 n1)
then show ?case using "2.hyps" by auto
}
next
case (3 c n p c')
{
case (1 n0 n1)
with "3.hyps"(4-6)[of n n n] and "3.hyps"(1-3)[of "Suc n" "Suc n" n]
show ?case by (auto simp add: min_def)
next
case (2 n0 n1)
then show ?case by auto
next
case (3 n0 n1)
then show ?case using "3.hyps" by auto
}
next
case (4 c n p c' n' p')
let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'"
{
case (1 n0 n1)
then have cnp: "isnpolyh ?cnp n"
and cnp': "isnpolyh ?cnp' n'"
and np: "isnpolyh p n"
and nc: "isnpolyh c (Suc n)"
and np': "isnpolyh p' n'"
and nc': "isnpolyh c' (Suc n')"
and nn0: "n \<ge> n0"
and nn1: "n' \<ge> n1"
by simp_all
consider "n < n'" | "n' < n" | "n' = n" by arith
then show ?case
proof cases
case 1
with "4.hyps"(4-5)[OF np cnp', of n] and "4.hyps"(1)[OF nc cnp', of n] nn0 cnp
show ?thesis by (simp add: min_def)
next
case 2
with "4.hyps"(16-17)[OF cnp np', of "n'"] and "4.hyps"(13)[OF cnp nc', of "Suc n'"] nn1 cnp'
show ?thesis by (cases "Suc n' = n") (simp_all add: min_def)
next
case 3
with "4.hyps"(16-17)[OF cnp np', of n] and "4.hyps"(13)[OF cnp nc', of n] cnp cnp' nn1 nn0
show ?thesis
by (auto intro!: polyadd_normh) (simp_all add: min_def isnpolyh_mono[OF nn0])
qed
next
fix n0 n1 m
assume np: "isnpolyh ?cnp n0"
assume np':"isnpolyh ?cnp' n1"
assume m: "m \<le> min n0 n1"
let ?d = "degreen (?cnp *\<^sub>p ?cnp') m"
let ?d1 = "degreen ?cnp m"
let ?d2 = "degreen ?cnp' m"
let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0 else ?d1 + ?d2)"
consider "n' < n \<or> n < n'" | "n' = n" by linarith
then show ?eq
proof cases
case 1
with "4.hyps"(3,6,18) np np' m show ?thesis by auto
next
case 2
have nn': "n' = n" by fact
then have nn: "\<not> n' < n \<and> \<not> n < n'" by arith
from "4.hyps"(16,18)[of n n' n]
"4.hyps"(13,14)[of n "Suc n'" n]
np np' nn'
have norm:
"isnpolyh ?cnp n"
"isnpolyh c' (Suc n)"
"isnpolyh (?cnp *\<^sub>p c') n"
"isnpolyh p' n"
"isnpolyh (?cnp *\<^sub>p p') n"
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p"
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p"
by (auto simp add: min_def)
show ?thesis
proof (cases "m = n")
case mn: True
from "4.hyps"(17,18)[OF norm(1,4), of n]
"4.hyps"(13,15)[OF norm(1,2), of n] norm nn' mn
have degs:
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else ?d1 + degreen c' n)"
"degreen (?cnp *\<^sub>p p') n = ?d1 + degreen p' n"
by (simp_all add: min_def)
from degs norm have th1: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
by simp
then have neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
by simp
have nmin: "n \<le> min n n"
by (simp add: min_def)
from polyadd_different_degreen[OF norm(3,6) neq nmin] th1
have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n =
degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
by simp
from "4.hyps"(16-18)[OF norm(1,4), of n]
"4.hyps"(13-15)[OF norm(1,2), of n]
mn norm m nn' deg
show ?thesis by simp
next
case mn: False
then have mn': "m < n"
using m np by auto
from nn' m np have max1: "m \<le> max n n"
by simp
then have min1: "m \<le> min n n"
by simp
then have min2: "m \<le> min n (Suc n)"
by simp
from "4.hyps"(16-18)[OF norm(1,4) min1]
"4.hyps"(13-15)[OF norm(1,2) min2]
degreen_polyadd[OF norm(3,6) max1]
have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m \<le>
max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)"
using mn nn' np np' by simp
with "4.hyps"(16-18)[OF norm(1,4) min1]
"4.hyps"(13-15)[OF norm(1,2) min2]
degreen_0[OF norm(3) mn']
nn' mn np np'
show ?thesis by clarsimp
qed
qed
}
{
case (2 n0 n1)
then have np: "isnpolyh ?cnp n0"
and np': "isnpolyh ?cnp' n1"
and m: "m \<le> min n0 n1"
by simp_all
then have mn: "m \<le> n" by simp
let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')"
have False if C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n"
proof -
from C have nn: "\<not> n' < n \<and> \<not> n < n'"
by simp
from "4.hyps"(16-18) [of n n n]
"4.hyps"(13-15)[of n "Suc n" n]
np np' C(2) mn
have norm:
"isnpolyh ?cnp n"
"isnpolyh c' (Suc n)"
"isnpolyh (?cnp *\<^sub>p c') n"
"isnpolyh p' n"
"isnpolyh (?cnp *\<^sub>p p') n"
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p"
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p"
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)"
"degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n"
by (simp_all add: min_def)
from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
by simp
have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
using norm by simp
from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"] degneq
show ?thesis by simp
qed
then show ?case using "4.hyps" by clarsimp
}
qed auto
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = Ipoly bs p * Ipoly bs q"
by (induct p q rule: polymul.induct) (auto simp add: field_simps)
lemma polymul_normh:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)"
using polymul_properties(1) by blast
lemma polymul_eq0_iff:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p"
using polymul_properties(2) by blast
lemma polymul_degreen:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> m \<le> min n0 n1 \<Longrightarrow>
degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)"
by (fact polymul_properties(3))
lemma polymul_norm:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polymul p q)"
using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p"
by (induct p arbitrary: n0 rule: headconst.induct) auto
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)"
by (induct p arbitrary: n0) auto
lemma monic_eqI:
assumes np: "isnpolyh p n0"
shows "INum (headconst p) * Ipoly bs (fst (monic p)) =
(Ipoly bs p ::'a::{field_char_0, power})"
unfolding monic_def Let_def
proof (cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np])
let ?h = "headconst p"
assume pz: "p \<noteq> 0\<^sub>p"
{
assume hz: "INum ?h = (0::'a)"
from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N"
by simp_all
from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N"
by simp
with headconst_zero[OF np] have "p = 0\<^sub>p"
by blast
with pz have False
by blast
}
then show "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0"
by blast
qed
text \<open>polyneg is a negation and preserves normal forms\<close>
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p"
by (induct p rule: polyneg.induct) auto
lemma polyneg0: "isnpolyh p n \<Longrightarrow> (~\<^sub>p p) = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: Nneg_def)
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p"
by (induct p arbitrary: n0 rule: polyneg.induct) auto
lemma polyneg_normh: "isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n"
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: polyneg0)
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)"
using isnpoly_def polyneg_normh by simp
text \<open>polysub is a substraction and preserves normal forms\<close>
lemma polysub[simp]: "Ipoly bs (polysub p q) = Ipoly bs p - Ipoly bs q"
by (simp add: polysub_def)
lemma polysub_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polysub p q) (min n0 n1)"
by (simp add: polysub_def polyneg_normh polyadd_normh)
lemma polysub_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polysub p q)"
using polyadd_norm polyneg_norm by (simp add: polysub_def)
lemma polysub_same_0[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> polysub p p = 0\<^sub>p"
unfolding polysub_def split_def fst_conv snd_conv
by (induct p arbitrary: n0) (auto simp add: Let_def Nsub0[simplified Nsub_def])
lemma polysub_0:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p -\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = q"
unfolding polysub_def split_def fst_conv snd_conv
by (induct p q arbitrary: n0 n1 rule:polyadd.induct)
(auto simp: Nsub0[simplified Nsub_def] Let_def)
text \<open>polypow is a power function and preserves normal forms\<close>
lemma polypow[simp]: "Ipoly bs (polypow n p) = (Ipoly bs p :: 'a::field_char_0) ^ n"
proof (induct n rule: polypow.induct)
case 1
then show ?case by simp
next
case (2 n)
let ?q = "polypow ((Suc n) div 2) p"
let ?d = "polymul ?q ?q"
consider "odd (Suc n)" | "even (Suc n)" by auto
then show ?case
proof cases
case odd: 1
have *: "(Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0)))) = Suc n div 2 + Suc n div 2 + 1"
by arith
from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul p ?d)"
by (simp add: Let_def)
also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2) * (Ipoly bs p)^(Suc n div 2)"
using "2.hyps" by simp
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)"
by (simp only: power_add power_one_right) simp
also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0))))"
by (simp only: *)
finally show ?thesis
unfolding numeral_2_eq_2 [symmetric]
using odd_two_times_div_two_nat [OF odd] by simp
next
case even: 2
from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d"
by (simp add: Let_def)
also have "\<dots> = (Ipoly bs p) ^ (2 * (Suc n div 2))"
using "2.hyps" by (simp only: mult_2 power_add) simp
finally show ?thesis
using even_two_times_div_two [OF even] by simp
qed
qed
lemma polypow_normh:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n"
proof (induct k arbitrary: n rule: polypow.induct)
case 1
then show ?case by auto
next
case (2 k n)
let ?q = "polypow (Suc k div 2) p"
let ?d = "polymul ?q ?q"
from 2 have *: "isnpolyh ?q n" and **: "isnpolyh p n"
by blast+
from polymul_normh[OF * *] have dn: "isnpolyh ?d n"
by simp
from polymul_normh[OF ** dn] have on: "isnpolyh (polymul p ?d) n"
by simp
from dn on show ?case by (simp, unfold Let_def) auto
qed
lemma polypow_norm:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)"
by (simp add: polypow_normh isnpoly_def)
text \<open>Finally the whole normalization\<close>
lemma polynate [simp]: "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::field_char_0)"
by (induct p rule:polynate.induct) auto
lemma polynate_norm[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpoly (polynate p)"
by (induct p rule: polynate.induct)
(simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm,
simp_all add: isnpoly_def)
text \<open>shift1\<close>
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)"
by (simp add: shift1_def)
lemma shift1_isnpoly:
assumes "isnpoly p"
and "p \<noteq> 0\<^sub>p"
shows "isnpoly (shift1 p) "
using assms by (simp add: shift1_def isnpoly_def)
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p"
by (simp add: shift1_def)
lemma funpow_shift1_isnpoly: "isnpoly p \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpoly (funpow n shift1 p)"
by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1)
lemma funpow_isnpolyh:
assumes "\<And>p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n"
and "isnpolyh p n"
shows "isnpolyh (funpow k f p) n"
using assms by (induct k arbitrary: p) auto
lemma funpow_shift1:
"(Ipoly bs (funpow n shift1 p) :: 'a :: field_char_0) =
Ipoly bs (Mul (Pw (Bound 0) n) p)"
by (induct n arbitrary: p) (simp_all add: shift1_isnpoly shift1)
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0"
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def)
lemma funpow_shift1_1:
"(Ipoly bs (funpow n shift1 p) :: 'a :: field_char_0) =
Ipoly bs (funpow n shift1 (1)\<^sub>p *\<^sub>p p)"
by (simp add: funpow_shift1)
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)"
by (induct p rule: poly_cmul.induct) (auto simp add: field_simps)
lemma behead:
assumes "isnpolyh p n"
shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) =
(Ipoly bs p :: 'a :: field_char_0)"
using assms
proof (induct p arbitrary: n rule: behead.induct)
case (1 c p n)
then have pn: "isnpolyh p n" by simp
from 1(1)[OF pn]
have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" .
then show ?case using "1.hyps"
apply (simp add: Let_def,cases "behead p = 0\<^sub>p")
apply (simp_all add: th[symmetric] field_simps)
done
qed (auto simp add: Let_def)
lemma behead_isnpolyh:
assumes "isnpolyh p n"
shows "isnpolyh (behead p) n"
using assms by (induct p rule: behead.induct) (auto simp add: Let_def isnpolyh_mono)
subsection \<open>Miscellaneous lemmas about indexes, decrementation, substitution etc ...\<close>
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p"
proof (induct p arbitrary: n rule: poly.induct, auto, goal_cases)
case prems: (1 c n p n')
then have "n = Suc (n - 1)"
by simp
then have "isnpolyh p (Suc (n - 1))"
using \<open>isnpolyh p n\<close> by simp
with prems(2) show ?case
by simp
qed
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p"
by (induct p arbitrary: n0 rule: isconstant.induct) (auto simp add: isnpolyh_polybound0)
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
by (induct p) auto
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)"
apply (induct p arbitrary: n0)
apply auto
apply atomize
apply (rename_tac nat a b, erule_tac x = "Suc nat" in allE)
apply auto
done
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)"
by (induct p arbitrary: n0 rule: head.induct) (auto intro: isnpolyh_polybound0)
lemma polybound0_I:
assumes "polybound0 a"
shows "Ipoly (b # bs) a = Ipoly (b' # bs) a"
using assms by (induct a rule: poly.induct) auto
lemma polysubst0_I: "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b # bs) a) # bs) t"
by (induct t) simp_all
lemma polysubst0_I':
assumes "polybound0 a"
shows "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b' # bs) a) # bs) t"
by (induct t) (simp_all add: polybound0_I[OF assms, where b="b" and b'="b'"])
lemma decrpoly:
assumes "polybound0 t"
shows "Ipoly (x # bs) t = Ipoly bs (decrpoly t)"
using assms by (induct t rule: decrpoly.induct) simp_all
lemma polysubst0_polybound0:
assumes "polybound0 t"
shows "polybound0 (polysubst0 t a)"
using assms by (induct a rule: poly.induct) auto
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p"
by (induct p arbitrary: n rule: degree.induct) (auto simp add: isnpolyh_polybound0)
primrec maxindex :: "poly \<Rightarrow> nat"
where
"maxindex (Bound n) = n + 1"
| "maxindex (CN c n p) = max (n + 1) (max (maxindex c) (maxindex p))"
| "maxindex (Add p q) = max (maxindex p) (maxindex q)"
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)"
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)"
| "maxindex (Neg p) = maxindex p"
| "maxindex (Pw p n) = maxindex p"
| "maxindex (C x) = 0"
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool"
where "wf_bs bs p \<longleftrightarrow> length bs \<ge> maxindex p"
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall>c \<in> set (coefficients p). wf_bs bs c"
proof (induct p rule: coefficients.induct)
case (1 c p)
show ?case
proof
fix x
assume "x \<in> set (coefficients (CN c 0 p))"
then consider "x = c" | "x \<in> set (coefficients p)"
by auto
then show "wf_bs bs x"
proof cases
case prems: 1
then show ?thesis
using "1.prems" by (simp add: wf_bs_def)
next
case prems: 2
from "1.prems" have "wf_bs bs p"
by (simp add: wf_bs_def)
with "1.hyps" prems show ?thesis
by blast
qed
qed
qed simp_all
lemma maxindex_coefficients: "\<forall>c \<in> set (coefficients p). maxindex c \<le> maxindex p"
by (induct p rule: coefficients.induct) auto
lemma wf_bs_I: "wf_bs bs p \<Longrightarrow> Ipoly (bs @ bs') p = Ipoly bs p"
by (induct p) (auto simp add: nth_append wf_bs_def)
lemma take_maxindex_wf:
assumes wf: "wf_bs bs p"
shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p"
proof -
let ?ip = "maxindex p"
let ?tbs = "take ?ip bs"
from wf have "length ?tbs = ?ip"
unfolding wf_bs_def by simp
then have wf': "wf_bs ?tbs p"
unfolding wf_bs_def by simp
have eq: "bs = ?tbs @ drop ?ip bs"
by simp
from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis
using eq by simp
qed
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1"
by (induct p) auto
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p"
by (simp add: wf_bs_def)
lemma wf_bs_insensitive': "wf_bs (x # bs) p = wf_bs (y # bs) p"
by (simp add: wf_bs_def)
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x # bs) p"
by (induct p rule: coefficients.induct) (auto simp add: wf_bs_def)
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []"
by (induct p rule: coefficients.induct) simp_all
lemma coefficients_head: "last (coefficients p) = head p"
by (induct p rule: coefficients.induct) auto
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x # bs) p"
unfolding wf_bs_def by (induct p rule: decrpoly.induct) auto
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists>ys. length (xs @ ys) = n"
by (rule exI[where x="replicate (n - length xs) z" for z]) simp
lemma isnpolyh_Suc_const: "isnpolyh p (Suc n) \<Longrightarrow> isconstant p"
apply (cases p)
apply auto
apply (rename_tac nat a, case_tac "nat")
apply simp_all
done
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)"
by (induct p q rule: polyadd.induct) (auto simp add: Let_def wf_bs_def)
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)"
apply (induct p q arbitrary: bs rule: polymul.induct)
apply (simp_all add: wf_bs_polyadd wf_bs_def)
apply clarsimp
apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format])
apply auto
done
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)"
by (induct p rule: polyneg.induct) (auto simp: wf_bs_def)
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)"
unfolding polysub_def split_def fst_conv snd_conv
using wf_bs_polyadd wf_bs_polyneg by blast
subsection \<open>Canonicity of polynomial representation, see lemma isnpolyh_unique\<close>
definition "polypoly bs p = map (Ipoly bs) (coefficients p)"
definition "polypoly' bs p = map (Ipoly bs \<circ> decrpoly) (coefficients p)"
definition "poly_nate bs p = map (Ipoly bs \<circ> decrpoly) (coefficients (polynate p))"
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall>q \<in> set (coefficients p). isnpolyh q n0"
proof (induct p arbitrary: n0 rule: coefficients.induct)
case (1 c p n0)
have cp: "isnpolyh (CN c 0 p) n0"
by fact
then have norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0"
by (auto simp add: isnpolyh_mono[where n'=0])
from "1.hyps"[OF norm(2)] norm(1) norm(4) show ?case
by simp
qed auto
lemma coefficients_isconst: "isnpolyh p n \<Longrightarrow> \<forall>q \<in> set (coefficients p). isconstant q"
by (induct p arbitrary: n rule: coefficients.induct) (auto simp add: isnpolyh_Suc_const)
lemma polypoly_polypoly':
assumes np: "isnpolyh p n0"
shows "polypoly (x # bs) p = polypoly' bs p"
proof -
let ?cf = "set (coefficients p)"
from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" .
have "polybound0 q" if "q \<in> ?cf" for q
proof -
from that cn_norm have *: "isnpolyh q n0"
by blast
from coefficients_isconst[OF np] that have "isconstant q"
by blast
with isconstant_polybound0[OF *] show ?thesis
by blast
qed
then have "\<forall>q \<in> ?cf. polybound0 q" ..
then have "\<forall>q \<in> ?cf. Ipoly (x # bs) q = Ipoly bs (decrpoly q)"
using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs]
by auto
then show ?thesis
unfolding polypoly_def polypoly'_def by simp
qed
lemma polypoly_poly:
assumes "isnpolyh p n0"
shows "Ipoly (x # bs) p = poly (polypoly (x # bs) p) x"
using assms
by (induct p arbitrary: n0 bs rule: coefficients.induct) (auto simp add: polypoly_def)
lemma polypoly'_poly:
assumes "isnpolyh p n0"
shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x"
using polypoly_poly[OF assms, simplified polypoly_polypoly'[OF assms]] .
lemma polypoly_poly_polybound0:
assumes "isnpolyh p n0"
and "polybound0 p"
shows "polypoly bs p = [Ipoly bs p]"
using assms
unfolding polypoly_def
apply (cases p)
apply auto
apply (rename_tac nat a, case_tac nat)
apply auto
done
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0"
by (induct p rule: head.induct) auto
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> headn p m = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
by (cases p) auto
lemma head_eq_headn0: "head p = headn p 0"
by (induct p rule: head.induct) simp_all
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> head p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
by (simp add: head_eq_headn0)
lemma isnpolyh_zero_iff:
assumes nq: "isnpolyh p n0"
and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0, power})"
shows "p = 0\<^sub>p"
using nq eq
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct)
case less
note np = \<open>isnpolyh p n0\<close> and zp = \<open>\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)\<close>
show "p = 0\<^sub>p"
proof (cases "maxindex p = 0")
case True
with np obtain c where "p = C c" by (cases p) auto
with zp np show ?thesis by (simp add: wf_bs_def)
next
case nz: False
let ?h = "head p"
let ?hd = "decrpoly ?h"
let ?ihd = "maxindex ?hd"
from head_isnpolyh[OF np] head_polybound0[OF np]
have h: "isnpolyh ?h n0" "polybound0 ?h"
by simp_all
then have nhd: "isnpolyh ?hd (n0 - 1)"
using decrpoly_normh by blast
from maxindex_coefficients[of p] coefficients_head[of p, symmetric]
have mihn: "maxindex ?h \<le> maxindex p"
by auto
with decr_maxindex[OF h(2)] nz have ihd_lt_n: "?ihd < maxindex p"
by auto
have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" if bs: "wf_bs bs ?hd" for bs :: "'a list"
proof -
let ?ts = "take ?ihd bs"
let ?rs = "drop ?ihd bs"
from bs have ts: "wf_bs ?ts ?hd"
by (simp add: wf_bs_def)
have bs_ts_eq: "?ts @ ?rs = bs"
by simp
from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x # ?ts) ?h"
by simp
from ihd_lt_n have "\<forall>x. length (x # ?ts) \<le> maxindex p"
by simp
with length_le_list_ex obtain xs where xs: "length ((x # ?ts) @ xs) = maxindex p"
by blast
then have "\<forall>x. wf_bs ((x # ?ts) @ xs) p"
by (simp add: wf_bs_def)
with zp have "\<forall>x. Ipoly ((x # ?ts) @ xs) p = 0"
by blast
then have "\<forall>x. Ipoly (x # (?ts @ xs)) p = 0"
by simp
with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a]
have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x"
by simp
then have "poly (polypoly' (?ts @ xs) p) = poly []"
by auto
then have "\<forall>c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0"
using poly_zero[where ?'a='a] by (simp add: polypoly'_def)
with coefficients_head[of p, symmetric]
have *: "Ipoly (?ts @ xs) ?hd = 0"
by simp
from bs have wf'': "wf_bs ?ts ?hd"
by (simp add: wf_bs_def)
with * wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0"
by simp
with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq show ?thesis
by simp
qed
then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)"
by blast
from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p"
by blast
then have "?h = 0\<^sub>p" by simp
with head_nz[OF np] show ?thesis by simp
qed
qed
lemma isnpolyh_unique:
assumes np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0,power})) \<longleftrightarrow> p = q"
proof auto
assume "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a) = \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>"
then have "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)"
by simp
then have "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)"
using wf_bs_polysub[where p=p and q=q] by auto
with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq] show "p = q"
by blast
qed
text \<open>Consequences of unicity on the algorithms for polynomial normalization.\<close>
lemma polyadd_commute:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "p +\<^sub>p q = q +\<^sub>p p"
using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]]
by simp
lemma zero_normh: "isnpolyh 0\<^sub>p n"
by simp
lemma one_normh: "isnpolyh (1)\<^sub>p n"
by simp
lemma polyadd_0[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
shows "p +\<^sub>p 0\<^sub>p = p"
and "0\<^sub>p +\<^sub>p p = p"
using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np]
isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all
lemma polymul_1[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
shows "p *\<^sub>p (1)\<^sub>p = p"
and "(1)\<^sub>p *\<^sub>p p = p"
using isnpolyh_unique[OF polymul_normh[OF np one_normh] np]
isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all
lemma polymul_0[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p"
and "0\<^sub>p *\<^sub>p p = 0\<^sub>p"
using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh]
isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all
lemma polymul_commute:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "p *\<^sub>p q = q *\<^sub>p p"
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np],
where ?'a = "'a::{field_char_0, power}"]
by simp
declare polyneg_polyneg [simp]
lemma isnpolyh_polynate_id [simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
shows "polynate p = p"
using isnpolyh_unique[where ?'a= "'a::field_char_0",
OF polynate_norm[of p, unfolded isnpoly_def] np]
polynate[where ?'a = "'a::field_char_0"]
by simp
lemma polynate_idempotent[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "polynate (polynate p) = polynate p"
using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] .
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)"
unfolding poly_nate_def polypoly'_def ..
lemma poly_nate_poly:
"poly (poly_nate bs p) = (\<lambda>x:: 'a ::field_char_0. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p]
unfolding poly_nate_polypoly' by auto
subsection \<open>Heads, degrees and all that\<close>
lemma degree_eq_degreen0: "degree p = degreen p 0"
by (induct p rule: degree.induct) simp_all
lemma degree_polyneg:
assumes "isnpolyh p n"
shows "degree (polyneg p) = degree p"
apply (induct p rule: polyneg.induct)
using assms
apply simp_all
apply (case_tac na)
apply auto
done
lemma degree_polyadd:
assumes np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)"
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp
lemma degree_polysub:
assumes np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)"
proof-
from nq have nq': "isnpolyh (~\<^sub>p q) n1"
using polyneg_normh by simp
from degree_polyadd[OF np nq'] show ?thesis
by (simp add: polysub_def degree_polyneg[OF nq])
qed
lemma degree_polysub_samehead:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
and h: "head p = head q"
and d: "degree p = degree q"
shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)"
unfolding polysub_def split_def fst_conv snd_conv
using np nq h d
proof (induct p q rule: polyadd.induct)
case (1 c c')
then show ?case
by (simp add: Nsub_def Nsub0[simplified Nsub_def])
next
case (2 c c' n' p')
from 2 have "degree (C c) = degree (CN c' n' p')"
by simp
then have nz: "n' > 0"
by (cases n') auto
then have "head (CN c' n' p') = CN c' n' p'"
by (cases n') auto
with 2 show ?case
by simp
next
case (3 c n p c')
then have "degree (C c') = degree (CN c n p)"
by simp
then have nz: "n > 0"
by (cases n) auto
then have "head (CN c n p) = CN c n p"
by (cases n) auto
with 3 show ?case by simp
next
case (4 c n p c' n' p')
then have H:
"isnpolyh (CN c n p) n0"
"isnpolyh (CN c' n' p') n1"
"head (CN c n p) = head (CN c' n' p')"
"degree (CN c n p) = degree (CN c' n' p')"
by simp_all
then have degc: "degree c = 0" and degc': "degree c' = 0"
by simp_all
then have degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0"
using H(1-2) degree_polyneg by auto
from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')"
by simp_all
from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc'
have degcmc': "degree (c +\<^sub>p ~\<^sub>pc') = 0"
by simp
from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'"
by auto
consider "n = n'" | "n < n'" | "n > n'"
by arith
then show ?case
proof cases
case nn': 1
consider "n = 0" | "n > 0" by arith
then show ?thesis
proof cases
case 1
with 4 nn' show ?thesis
by (auto simp add: Let_def degcmc')
next
case 2
with nn' H(3) have "c = c'" and "p = p'"
by (cases n; auto)+
with nn' 4 show ?thesis
using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv]
using polysub_same_0[OF c'nh, simplified polysub_def]
by (simp add: Let_def)
qed
next
case nn': 2
then have n'p: "n' > 0"
by simp
then have headcnp':"head (CN c' n' p') = CN c' n' p'"
by (cases n') simp_all
with 4 nn' have degcnp': "degree (CN c' n' p') = 0"
and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')"
by (cases n', simp_all)
then have "n > 0"
by (cases n) simp_all
then have headcnp: "head (CN c n p) = CN c n p"
by (cases n) auto
from H(3) headcnp headcnp' nn' show ?thesis
by auto
next
case nn': 3
then have np: "n > 0" by simp
then have headcnp:"head (CN c n p) = CN c n p"
by (cases n) simp_all
from 4 have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)"
by simp
from np have degcnp: "degree (CN c n p) = 0"
by (cases n) simp_all
with degcnpeq have "n' > 0"
by (cases n') simp_all
then have headcnp': "head (CN c' n' p') = CN c' n' p'"
by (cases n') auto
from H(3) headcnp headcnp' nn' show ?thesis by auto
qed
qed auto
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p"
by (induct p arbitrary: n0 rule: head.induct) (simp_all add: shift1_def)
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p"
proof (induct k arbitrary: n0 p)
case 0
then show ?case
by auto
next
case (Suc k n0 p)
then have "isnpolyh (shift1 p) 0"
by (simp add: shift1_isnpolyh)
with Suc have "head (funpow k shift1 (shift1 p)) = head (shift1 p)"
and "head (shift1 p) = head p"
by (simp_all add: shift1_head)
then show ?case
by (simp add: funpow_swap1)
qed
lemma shift1_degree: "degree (shift1 p) = 1 + degree p"
by (simp add: shift1_def)
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p "
by (induct k arbitrary: p) (auto simp add: shift1_degree)
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p"
by (induct n arbitrary: p) simp_all
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p"
by (induct p arbitrary: n rule: degree.induct) auto
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p"
by (induct p arbitrary: n rule: degreen.induct) auto
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p"
by (induct p arbitrary: n rule: degree.induct) auto
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p"
by (induct p rule: head.induct) auto
lemma polyadd_eq_const_degree:
"isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> polyadd p q = C c \<Longrightarrow> degree p = degree q"
using polyadd_eq_const_degreen degree_eq_degreen0 by simp
lemma polyadd_head:
assumes np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
and deg: "degree p \<noteq> degree q"
shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)"
using np nq deg
apply (induct p q arbitrary: n0 n1 rule: polyadd.induct)
apply simp_all
apply (case_tac n', simp, simp)
apply (case_tac n, simp, simp)
apply (case_tac n, case_tac n', simp add: Let_def)
apply (auto simp add: polyadd_eq_const_degree)[2]
apply (metis head_nz)
apply (metis head_nz)
apply (metis degree.simps(9) gr0_conv_Suc head.simps(1) less_Suc0 not_less_eq)
done
lemma polymul_head_polyeq:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> q \<noteq> 0\<^sub>p \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q"
proof (induct p q arbitrary: n0 n1 rule: polymul.induct)
case (2 c c' n' p' n0 n1)
then have "isnpolyh (head (CN c' n' p')) n1" "isnormNum c"
by (simp_all add: head_isnpolyh)
then show ?case
using 2 by (cases n') auto
next
case (3 c n p c' n0 n1)
then have "isnpolyh (head (CN c n p)) n0" "isnormNum c'"
by (simp_all add: head_isnpolyh)
then show ?case
using 3 by (cases n) auto
next
case (4 c n p c' n' p' n0 n1)
then have norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')"
"isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'"
by simp_all
consider "n < n'" | "n' < n" | "n' = n" by arith
then show ?case
proof cases
case nn': 1
then show ?thesis
using norm "4.hyps"(2)[OF norm(1,6)] "4.hyps"(1)[OF norm(2,6)]
apply simp
apply (cases n)
apply simp
apply (cases n')
apply simp_all
done
next
case nn': 2
then show ?thesis
using norm "4.hyps"(6) [OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)]
apply simp
apply (cases n')
apply simp
apply (cases n)
apply auto
done
next
case nn': 3
from nn' polymul_normh[OF norm(5,4)]
have ncnpc': "isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def)
from nn' polymul_normh[OF norm(5,3)] norm
have ncnpp': "isnpolyh (CN c n p *\<^sub>p p') n" by simp
from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6)
have ncnpp0': "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
from polyadd_normh[OF ncnpc' ncnpp0']
have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n"
by (simp add: min_def)
consider "n > 0" | "n = 0" by auto
then show ?thesis
proof cases
case np: 1
with nn' head_isnpolyh_Suc'[OF np nth]
head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']]
show ?thesis by simp
next
case nz: 2
from polymul_degreen[OF norm(5,4), where m="0"]
polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0
norm(5,6) degree_npolyhCN[OF norm(6)]
have dth: "degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))"
by simp
then have dth': "degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))"
by simp
from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth
show ?thesis
using norm "4.hyps"(6)[OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] nn' nz
by simp
qed
qed
qed simp_all
lemma degree_coefficients: "degree p = length (coefficients p) - 1"
by (induct p rule: degree.induct) auto
lemma degree_head[simp]: "degree (head p) = 0"
by (induct p rule: head.induct) auto
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1 + degree p"
by (cases n) simp_all
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge> degree p"
by (cases n) simp_all
lemma polyadd_different_degree:
"isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> degree p \<noteq> degree q \<Longrightarrow>
degree (polyadd p q) = max (degree p) (degree q)"
using polyadd_different_degreen degree_eq_degreen0 by simp
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m"
by (induct p arbitrary: n0 rule: polyneg.induct) auto
lemma degree_polymul:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and nq: "isnpolyh q n1"
shows "degree (p *\<^sub>p q) \<le> degree p + degree q"
using polymul_degreen[OF np nq, where m="0"] degree_eq_degreen0 by simp
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p"
by (induct p arbitrary: n rule: degree.induct) auto
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head (polyneg p) = polyneg (head p)"
by (induct p arbitrary: n rule: degree.induct) auto
subsection \<open>Correctness of polynomial pseudo division\<close>
lemma polydivide_aux_properties:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and ns: "isnpolyh s n1"
and ap: "head p = a"
and ndp: "degree p = n"
and pnz: "p \<noteq> 0\<^sub>p"
shows "polydivide_aux a n p k s = (k', r) \<longrightarrow> k' \<ge> k \<and> (degree r = 0 \<or> degree r < degree p) \<and>
(\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> (polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
using ns
proof (induct "degree s" arbitrary: s k k' r n1 rule: less_induct)
case less
let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
let ?ths = "polydivide_aux a n p k s = (k', r) \<longrightarrow> k \<le> k' \<and>
(degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
let ?b = "head s"
let ?p' = "funpow (degree s - n) shift1 p"
let ?xdn = "funpow (degree s - n) shift1 (1)\<^sub>p"
let ?akk' = "a ^\<^sub>p (k' - k)"
note ns = \<open>isnpolyh s n1\<close>
from np have np0: "isnpolyh p 0"
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by simp
have np': "isnpolyh ?p' 0"
using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def
by simp
have headp': "head ?p' = head p"
using funpow_shift1_head[OF np pnz] by simp
from funpow_shift1_isnpoly[where p="(1)\<^sub>p"] have nxdn: "isnpolyh ?xdn 0"
by (simp add: isnpoly_def)
from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap
have nakk':"isnpolyh ?akk' 0" by blast
show ?ths
proof (cases "s = 0\<^sub>p")
case True
with np show ?thesis
apply (clarsimp simp: polydivide_aux.simps)
apply (rule exI[where x="0\<^sub>p"])
apply simp
done
next
case sz: False
show ?thesis
proof (cases "degree s < n")
case True
then show ?thesis
using ns ndp np polydivide_aux.simps
apply auto
apply (rule exI[where x="0\<^sub>p"])
apply simp
done
next
case dn': False
then have dn: "degree s \<ge> n"
by arith
have degsp': "degree s = degree ?p'"
using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"]
by simp
show ?thesis
proof (cases "?b = a")
case ba: True
then have headsp': "head s = head ?p'"
using ap headp' by simp
have nr: "isnpolyh (s -\<^sub>p ?p') 0"
using polysub_normh[OF ns np'] by simp
from degree_polysub_samehead[OF ns np' headsp' degsp']
consider "degree (s -\<^sub>p ?p') < degree s" | "s -\<^sub>p ?p' = 0\<^sub>p" by auto
then show ?thesis
proof cases
case deglt: 1
from polydivide_aux.simps sz dn' ba
have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')"
by (simp add: Let_def)
have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths"
if h1: "polydivide_aux a n p k s = (k', r)"
proof -
from less(1)[OF deglt nr, of k k' r] trans[OF eq[symmetric] h1]
have kk': "k \<le> k'"
and nr: "\<exists>nr. isnpolyh r nr"
and dr: "degree r = 0 \<or> degree r < degree p"
and q1: "\<exists>q nq. isnpolyh q nq \<and> a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r"
by auto
from q1 obtain q n1 where nq: "isnpolyh q n1"
and asp: "a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r"
by blast
from nr obtain nr where nr': "isnpolyh r nr"
by blast
from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0"
by simp
from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]
have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp
from polyadd_normh[OF polymul_normh[OF np
polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr']
have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0"
by simp
from asp have "\<forall>bs :: 'a::field_char_0 list.
Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)"
by simp
then have "\<forall>bs :: 'a::field_char_0 list.
Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) =
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r"
by (simp add: field_simps)
then have "\<forall>bs :: 'a::field_char_0 list.
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p *\<^sub>p p) +
Ipoly bs p * Ipoly bs q + Ipoly bs r"
by (auto simp only: funpow_shift1_1)
then have "\<forall>bs:: 'a::field_char_0 list.
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p) +
Ipoly bs q) + Ipoly bs r"
by (simp add: field_simps)
then have "\<forall>bs:: 'a::field_char_0 list.
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r)"
by simp
with isnpolyh_unique[OF nakks' nqr']
have "a ^\<^sub>p (k' - k) *\<^sub>p s =
p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r"
by blast
with nq' have ?qths
apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q" in exI)
apply (rule_tac x="0" in exI)
apply simp
done
with kk' nr dr show ?thesis
by blast
qed
then show ?thesis by blast
next
case spz: 2
from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::field_char_0"]
have "\<forall>bs:: 'a::field_char_0 list. Ipoly bs s = Ipoly bs ?p'"
by simp
with np nxdn have "\<forall>bs:: 'a::field_char_0 list. Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)"
by (simp only: funpow_shift1_1) simp
then have sp': "s = ?xdn *\<^sub>p p"
using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]]
by blast
have ?thesis if h1: "polydivide_aux a n p k s = (k', r)"
proof -
from sz dn' ba
have "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')"
by (simp add: Let_def polydivide_aux.simps)
also have "\<dots> = (k,0\<^sub>p)"
using spz by (simp add: polydivide_aux.simps)
finally have "(k', r) = (k, 0\<^sub>p)"
by (simp add: h1)
with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]]
polyadd_0(2)[OF polymul_normh[OF np nxdn]] show ?thesis
apply auto
apply (rule exI[where x="?xdn"])
apply (auto simp add: polymul_commute[of p])
done
qed
then show ?thesis by blast
qed
next
case ba: False
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns]
polymul_normh[OF head_isnpolyh[OF ns] np']]
have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0"
by (simp add: min_def)
have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p"
using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns]
polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns]
funpow_shift1_nz[OF pnz]
by simp_all
from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz
polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz
funpow_shift1_nz[OF pnz, where n="degree s - n"]
have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')"
using head_head[OF ns] funpow_shift1_head[OF np pnz]
polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]]
by (simp add: ap)
from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
head_nz[OF np] pnz sz ap[symmetric]
funpow_shift1_nz[OF pnz, where n="degree s - n"]
polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"] head_nz[OF ns]
ndp dn
have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p')"
by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree)
consider "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s" | "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p"
using degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns]
polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth]
polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"]
head_nz[OF np] pnz sz ap[symmetric]
by (auto simp add: degree_eq_degreen0[symmetric])
then show ?thesis
proof cases
case dth: 1
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns]
polymul_normh[OF head_isnpolyh[OF ns]np']] ap
have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0"
by simp
have ?thesis if h1: "polydivide_aux a n p k s = (k', r)"
proof -
from h1 polydivide_aux.simps sz dn' ba
have eq:"polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)"
by (simp add: Let_def)
with less(1)[OF dth nasbp', of "Suc k" k' r]
obtain q nq nr where kk': "Suc k \<le> k'"
and nr: "isnpolyh r nr"
and nq: "isnpolyh q nq"
and dr: "degree r = 0 \<or> degree r < degree p"
and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r"
by auto
from kk' have kk'': "Suc (k' - Suc k) = k' - k"
by arith
have "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r"
for bs :: "'a::field_char_0 list"
proof -
from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric]
have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)"
by simp
then have "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s =
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r"
by (simp add: field_simps)
then have "Ipoly bs a ^ (k' - k) * Ipoly bs s =
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r"
by (simp add: kk'' funpow_shift1_1[where n="degree s - n" and p="p"])
then show ?thesis
by (simp add: field_simps)
qed
then have ieq: "\<forall>bs :: 'a::field_char_0 list.
Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)"
by auto
let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)"
from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap] nxdn]]
have nqw: "isnpolyh ?q 0"
by simp
from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]]
have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r"
by blast
from dr kk' nr h1 asth nqw show ?thesis
apply simp
apply (rule conjI)
apply (rule exI[where x="nr"], simp)
apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp)
apply (rule exI[where x="0"], simp)
done
qed
then show ?thesis by blast
next
case spz: 2
have hth: "\<forall>bs :: 'a::field_char_0 list.
Ipoly bs (a *\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))"
proof
fix bs :: "'a::field_char_0 list"
from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz
have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'"
by simp
then have "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p"
by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"])
then show "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))"
by simp
qed
from hth have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)"
using isnpolyh_unique[where ?'a = "'a::field_char_0", OF polymul_normh[OF head_isnpolyh[OF np] ns]
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]],
simplified ap]
by simp
have ?ths if h1: "polydivide_aux a n p k s = (k', r)"
proof -
from h1 sz ba dn' spz polydivide_aux.simps polydivide_aux.simps
have "(k', r) = (Suc k, 0\<^sub>p)"
by (simp add: Let_def)
with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn]
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq
show ?thesis
apply (clarsimp simp add: Let_def)
apply (rule exI[where x="?b *\<^sub>p ?xdn"])
apply simp
apply (rule exI[where x="0"], simp)
done
qed
then show ?thesis by blast
qed
qed
qed
qed
qed
lemma polydivide_properties:
assumes "SORT_CONSTRAINT('a::field_char_0)"
and np: "isnpolyh p n0"
and ns: "isnpolyh s n1"
and pnz: "p \<noteq> 0\<^sub>p"
shows "\<exists>k r. polydivide s p = (k, r) \<and>
(\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) \<and>
(\<exists>q n1. isnpolyh q n1 \<and> polypow k (head p) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
proof -
have trv: "head p = head p" "degree p = degree p"
by simp_all
from polydivide_def[where s="s" and p="p"] have ex: "\<exists> k r. polydivide s p = (k,r)"
by auto
then obtain k r where kr: "polydivide s p = (k,r)"
by blast
from trans[OF polydivide_def[where s="s"and p="p", symmetric] kr]
polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"]
have "(degree r = 0 \<or> degree r < degree p) \<and>
(\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)"
by blast
with kr show ?thesis
apply -
apply (rule exI[where x="k"])
apply (rule exI[where x="r"])
apply simp
done
qed
subsection \<open>More about polypoly and pnormal etc\<close>
definition "isnonconstant p \<longleftrightarrow> \<not> isconstant p"
lemma isnonconstant_pnormal_iff:
assumes "isnonconstant p"
shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0"
proof
let ?p = "polypoly bs p"
assume *: "pnormal ?p"
have "coefficients p \<noteq> []"
using assms by (cases p) auto
from coefficients_head[of p] last_map[OF this, of "Ipoly bs"] pnormal_last_nonzero[OF *]
show "Ipoly bs (head p) \<noteq> 0"
by (simp add: polypoly_def)
next
assume *: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
let ?p = "polypoly bs p"
have csz: "coefficients p \<noteq> []"
using assms by (cases p) auto
then have pz: "?p \<noteq> []"
by (simp add: polypoly_def)
then have lg: "length ?p > 0"
by simp
from * coefficients_head[of p] last_map[OF csz, of "Ipoly bs"]
have lz: "last ?p \<noteq> 0"
by (simp add: polypoly_def)
from pnormal_last_length[OF lg lz] show "pnormal ?p" .
qed
lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1"
unfolding isnonconstant_def
apply (cases p)
apply simp_all
apply (rename_tac nat a, case_tac nat)
apply auto
done
lemma isnonconstant_nonconstant:
assumes "isnonconstant p"
shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0"
proof
let ?p = "polypoly bs p"
assume "nonconstant ?p"
with isnonconstant_pnormal_iff[OF assms, of bs] show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
unfolding nonconstant_def by blast
next
let ?p = "polypoly bs p"
assume "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
with isnonconstant_pnormal_iff[OF assms, of bs] have pn: "pnormal ?p"
by blast
have False if H: "?p = [x]" for x
proof -
from H have "length (coefficients p) = 1"
by (auto simp: polypoly_def)
with isnonconstant_coefficients_length[OF assms]
show ?thesis by arith
qed
then show "nonconstant ?p"
using pn unfolding nonconstant_def by blast
qed
lemma pnormal_length: "p \<noteq> [] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p"
apply (induct p)
apply (simp_all add: pnormal_def)
apply (case_tac "p = []")
apply simp_all
done
lemma degree_degree:
assumes "isnonconstant p"
shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
let ?p = "polypoly bs p"
{
assume ?lhs
from isnonconstant_coefficients_length[OF assms] have "?p \<noteq> []"
by (auto simp: polypoly_def)
from \<open>?lhs\<close> degree_coefficients[of p] isnonconstant_coefficients_length[OF assms]
have "length (pnormalize ?p) = length ?p"
by (simp add: Polynomial_List.degree_def polypoly_def)
with pnormal_length[OF \<open>?p \<noteq> []\<close>] have "pnormal ?p"
by blast
with isnonconstant_pnormal_iff[OF assms] show ?rhs
by blast
next
assume ?rhs
with isnonconstant_pnormal_iff[OF assms] have "pnormal ?p"
by blast
with degree_coefficients[of p] isnonconstant_coefficients_length[OF assms] show ?lhs
by (auto simp: polypoly_def pnormal_def Polynomial_List.degree_def)
}
qed
section \<open>Swaps -- division by a certain variable\<close>
primrec swap :: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly"
where
"swap n m (C x) = C x"
| "swap n m (Bound k) = Bound (if k = n then m else if k = m then n else k)"
| "swap n m (Neg t) = Neg (swap n m t)"
| "swap n m (Add s t) = Add (swap n m s) (swap n m t)"
| "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)"
| "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)"
| "swap n m (Pw t k) = Pw (swap n m t) k"
| "swap n m (CN c k p) = CN (swap n m c) (if k = n then m else if k=m then n else k) (swap n m p)"
lemma swap:
assumes "n < length bs"
and "m < length bs"
shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
proof (induct t)
case (Bound k)
then show ?case
using assms by simp
next
case (CN c k p)
then show ?case
using assms by simp
qed simp_all
lemma swap_swap_id [simp]: "swap n m (swap m n t) = t"
by (induct t) simp_all
lemma swap_commute: "swap n m p = swap m n p"
by (induct p) simp_all
lemma swap_same_id[simp]: "swap n n t = t"
by (induct t) simp_all
definition "swapnorm n m t = polynate (swap n m t)"
lemma swapnorm:
assumes nbs: "n < length bs"
and mbs: "m < length bs"
shows "((Ipoly bs (swapnorm n m t) :: 'a::field_char_0)) =
Ipoly ((bs[n:= bs!m])[m:= bs!n]) t"
using swap[OF assms] swapnorm_def by simp
lemma swapnorm_isnpoly [simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "isnpoly (swapnorm n m p)"
unfolding swapnorm_def by simp
definition "polydivideby n s p =
(let
ss = swapnorm 0 n s;
sp = swapnorm 0 n p;
h = head sp;
(k, r) = polydivide ss sp
in (k, swapnorm 0 n h, swapnorm 0 n r))"
lemma swap_nz [simp]: "swap n m p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
by (induct p) simp_all
fun isweaknpoly :: "poly \<Rightarrow> bool"
where
"isweaknpoly (C c) = True"
| "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p"
| "isweaknpoly p = False"
lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p"
by (induct p arbitrary: n0) auto
lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)"
by (induct p) auto
end