src/HOL/IMP/Expr.thy
author wenzelm
Sat, 01 Dec 2001 18:52:32 +0100
changeset 12338 de0f4a63baa5
parent 5183 89f162de39cf
child 12431 07ec657249e5
permissions -rw-r--r--
renamed class "term" to "type" (actually "HOL.type");

(*  Title:      HOL/IMP/Expr.thy
    ID:         $Id$
    Author:     Heiko Loetzbeyer & Robert Sandner & Tobias Nipkow, TUM
    Copyright   1994 TUM

Arithmetic expressions and Boolean expressions.
Not used in the rest of the language, but included for completeness.
*)

Expr = Datatype +

(** Arithmetic expressions **)
types loc
      state = "loc => nat"
      n2n = "nat => nat"
      n2n2n = "nat => nat => nat"

arities loc :: type

datatype
  aexp = N nat
       | X loc
       | Op1 n2n aexp
       | Op2 n2n2n aexp aexp

(** Evaluation of arithmetic expressions **)
consts  evala    :: "((aexp*state) * nat) set"
       "-a->"    :: "[aexp*state,nat] => bool"         (infixl 50)
translations
    "aesig -a-> n" == "(aesig,n) : evala"
inductive evala
  intrs 
    N   "(N(n),s) -a-> n"
    X   "(X(x),s) -a-> s(x)"
    Op1 "(e,s) -a-> n ==> (Op1 f e,s) -a-> f(n)"
    Op2 "[| (e0,s) -a-> n0;  (e1,s)  -a-> n1 |] 
           ==> (Op2 f e0 e1,s) -a-> f n0 n1"

types n2n2b = "[nat,nat] => bool"

(** Boolean expressions **)

datatype
  bexp = true
       | false
       | ROp  n2n2b aexp aexp
       | noti bexp
       | andi bexp bexp         (infixl 60)
       | ori  bexp bexp         (infixl 60)

(** Evaluation of boolean expressions **)
consts evalb    :: "((bexp*state) * bool)set"       
       "-b->"   :: "[bexp*state,bool] => bool"         (infixl 50)

translations
    "besig -b-> b" == "(besig,b) : evalb"

inductive evalb
 intrs (*avoid clash with ML constructors true, false*)
    tru   "(true,s) -b-> True"
    fls   "(false,s) -b-> False"
    ROp   "[| (a0,s) -a-> n0; (a1,s) -a-> n1 |] 
           ==> (ROp f a0 a1,s) -b-> f n0 n1"
    noti  "(b,s) -b-> w ==> (noti(b),s) -b-> (~w)"
    andi  "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |] 
          ==> (b0 andi b1,s) -b-> (w0 & w1)"
    ori   "[| (b0,s) -b-> w0; (b1,s) -b-> w1 |] 
            ==> (b0 ori b1,s) -b-> (w0 | w1)"

(** Denotational semantics of arithemtic and boolean expressions **)
consts
  A     :: aexp => state => nat
  B     :: bexp => state => bool

primrec
  "A(N(n)) = (%s. n)"
  "A(X(x)) = (%s. s(x))"
  "A(Op1 f a) = (%s. f(A a s))"
  "A(Op2 f a0 a1) = (%s. f (A a0 s) (A a1 s))"

primrec
  "B(true) = (%s. True)"
  "B(false) = (%s. False)"
  "B(ROp f a0 a1) = (%s. f (A a0 s) (A a1 s))"
  "B(noti(b)) = (%s. ~(B b s))"
  "B(b0 andi b1) = (%s. (B b0 s) & (B b1 s))"
  "B(b0 ori b1) = (%s. (B b0 s) | (B b1 s))"

end