(* Title: HOL/HOL.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1993 University of Cambridge
Higher-Order Logic
*)
HOL = CPure +
classes
term < logic
axclass
plus < term
axclass
minus < term
axclass
times < term
default
term
types
bool
arities
fun :: (term, term) term
bool :: term
consts
(* Constants *)
Trueprop :: "bool => prop" ("(_)" 5)
not :: "bool => bool" ("~ _" [40] 40)
True, False :: "bool"
If :: "[bool, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10)
Inv :: "('a => 'b) => ('b => 'a)"
(* Binders *)
Eps :: "('a => bool) => 'a"
All :: "('a => bool) => bool" (binder "! " 10)
Ex :: "('a => bool) => bool" (binder "? " 10)
Ex1 :: "('a => bool) => bool" (binder "?! " 10)
Let :: "['a, 'a => 'b] => 'b"
(* Infixes *)
o :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixr 50)
"=" :: "['a, 'a] => bool" (infixl 50)
"&" :: "[bool, bool] => bool" (infixr 35)
"|" :: "[bool, bool] => bool" (infixr 30)
"-->" :: "[bool, bool] => bool" (infixr 25)
(* Overloaded Constants *)
"+" :: "['a::plus, 'a] => 'a" (infixl 65)
"-" :: "['a::minus, 'a] => 'a" (infixl 65)
"*" :: "['a::times, 'a] => 'a" (infixl 70)
types
letbinds letbind
case_syn cases_syn
syntax
"~=" :: "['a, 'a] => bool" (infixl 50)
"@Eps" :: "[pttrn,bool] => 'a" ("(3@ _./ _)" 10)
(* Alternative Quantifiers *)
"*All" :: "[idts, bool] => bool" ("(3ALL _./ _)" 10)
"*Ex" :: "[idts, bool] => bool" ("(3EX _./ _)" 10)
"*Ex1" :: "[idts, bool] => bool" ("(3EX! _./ _)" 10)
(* Let expressions *)
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10)
"" :: "letbind => letbinds" ("_")
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _")
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" 10)
(* Case expressions *)
"@case" :: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10)
"@case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10)
"" :: "case_syn => cases_syn" ("_")
"@case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _")
translations
"x ~= y" == "~ (x = y)"
"@ x.b" == "Eps(%x.b)"
"ALL xs. P" => "! xs. P"
"EX xs. P" => "? xs. P"
"EX! xs. P" => "?! xs. P"
"_Let (_binds b bs) e" == "_Let b (_Let bs e)"
"let x = a in e" == "Let a (%x. e)"
rules
eq_reflection "(x=y) ==> (x==y)"
(* Basic Rules *)
refl "t = (t::'a)"
subst "[| s = t; P(s) |] ==> P(t::'a)"
ext "(!!x::'a. (f(x)::'b) = g(x)) ==> (%x.f(x)) = (%x.g(x))"
selectI "P(x::'a) ==> P(@x.P(x))"
impI "(P ==> Q) ==> P-->Q"
mp "[| P-->Q; P |] ==> Q"
defs
True_def "True == ((%x::bool.x)=(%x.x))"
All_def "All(P) == (P = (%x.True))"
Ex_def "Ex(P) == P(@x.P(x))"
False_def "False == (!P.P)"
not_def "~ P == P-->False"
and_def "P & Q == !R. (P-->Q-->R) --> R"
or_def "P | Q == !R. (P-->R) --> (Q-->R) --> R"
Ex1_def "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)"
rules
(* Axioms *)
iff "(P-->Q) --> (Q-->P) --> (P=Q)"
True_or_False "(P=True) | (P=False)"
defs
(* Misc Definitions *)
Let_def "Let s f == f(s)"
Inv_def "Inv(f::'a=>'b) == (% y. @x. f(x)=y)"
o_def "(f::'b=>'c) o g == (%(x::'a). f(g(x)))"
if_def "If P x y == @z::'a. (P=True --> z=x) & (P=False --> z=y)"
end
ML
(** Choice between the HOL and Isabelle style of quantifiers **)
val HOL_quantifiers = ref true;
fun alt_ast_tr' (name, alt_name) =
let
fun ast_tr' (*name*) args =
if ! HOL_quantifiers then raise Match
else Syntax.mk_appl (Syntax.Constant alt_name) args;
in
(name, ast_tr')
end;
val print_ast_translation =
map alt_ast_tr' [("! ", "*All"), ("? ", "*Ex"), ("?! ", "*Ex1")];