(* Title: HOL/Library/Subseq_Order.thy
Author: Peter Lammich, Uni Muenster <peter.lammich@uni-muenster.de>
Author: Florian Haftmann, TU Muenchen
Author: Tobias Nipkow, TU Muenchen
*)
section \<open>Subsequence Ordering\<close>
theory Subseq_Order
imports Sublist
begin
text \<open>
This theory defines subsequence ordering on lists. A list \<open>ys\<close> is a subsequence of a
list \<open>xs\<close>, iff one obtains \<open>ys\<close> by erasing some elements from \<open>xs\<close>.
\<close>
subsection \<open>Definitions and basic lemmas\<close>
instantiation list :: (type) ord
begin
definition less_eq_list
where \<open>xs \<le> ys \<longleftrightarrow> subseq xs ys\<close> for xs ys :: \<open>'a list\<close>
definition less_list
where \<open>xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs\<close> for xs ys :: \<open>'a list\<close>
instance ..
end
instance list :: (type) order
proof
fix xs ys zs :: "'a list"
show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs"
unfolding less_list_def ..
show "xs \<le> xs"
by (simp add: less_eq_list_def)
show "xs = ys" if "xs \<le> ys" and "ys \<le> xs"
using that unfolding less_eq_list_def
by (rule subseq_order.antisym)
show "xs \<le> zs" if "xs \<le> ys" and "ys \<le> zs"
using that unfolding less_eq_list_def
by (rule subseq_order.order_trans)
qed
lemmas less_eq_list_induct [consumes 1, case_names empty drop take] =
list_emb.induct [of "(=)", folded less_eq_list_def]
lemma less_eq_list_empty [code]:
\<open>[] \<le> xs \<longleftrightarrow> True\<close>
by (simp add: less_eq_list_def)
lemma less_eq_list_below_empty [code]:
\<open>x # xs \<le> [] \<longleftrightarrow> False\<close>
by (simp add: less_eq_list_def)
lemma le_list_Cons2_iff [simp, code]:
\<open>x # xs \<le> y # ys \<longleftrightarrow> (if x = y then xs \<le> ys else x # xs \<le> ys)\<close>
by (simp add: less_eq_list_def)
lemma less_list_empty [simp]:
\<open>[] < xs \<longleftrightarrow> xs \<noteq> []\<close>
by (metis less_eq_list_def list_emb_Nil order_less_le)
lemma less_list_empty_Cons [code]:
\<open>[] < x # xs \<longleftrightarrow> True\<close>
by simp_all
lemma less_list_below_empty [simp, code]:
\<open>xs < [] \<longleftrightarrow> False\<close>
by (metis list_emb_Nil less_eq_list_def less_list_def)
lemma less_list_Cons2_iff [code]:
\<open>x # xs < y # ys \<longleftrightarrow> (if x = y then xs < ys else x # xs \<le> ys)\<close>
by (simp add: less_le)
lemmas less_eq_list_drop = list_emb.list_emb_Cons [of "(=)", folded less_eq_list_def]
lemmas le_list_map = subseq_map [folded less_eq_list_def]
lemmas le_list_filter = subseq_filter [folded less_eq_list_def]
lemmas le_list_length = list_emb_length [of "(=)", folded less_eq_list_def]
lemma less_list_length: "xs < ys \<Longrightarrow> length xs < length ys"
by (metis list_emb_length subseq_same_length le_neq_implies_less less_list_def less_eq_list_def)
lemma less_list_drop: "xs < ys \<Longrightarrow> xs < x # ys"
by (unfold less_le less_eq_list_def) (auto)
lemma less_list_take_iff: "x # xs < x # ys \<longleftrightarrow> xs < ys"
by (metis subseq_Cons2_iff less_list_def less_eq_list_def)
lemma less_list_drop_many: "xs < ys \<Longrightarrow> xs < zs @ ys"
by (metis subseq_append_le_same_iff subseq_drop_many order_less_le
self_append_conv2 less_eq_list_def)
lemma less_list_take_many_iff: "zs @ xs < zs @ ys \<longleftrightarrow> xs < ys"
by (metis less_list_def less_eq_list_def subseq_append')
lemma less_list_rev_take: "xs @ zs < ys @ zs \<longleftrightarrow> xs < ys"
by (unfold less_le less_eq_list_def) auto
end