src/HOL/ex/ReflectionEx.thy
author krauss
Tue, 05 Aug 2008 14:40:48 +0200
changeset 27742 df552e6027cf
parent 23650 0a6a719d24d5
child 28866 30cd9d89a0fb
permissions -rw-r--r--
fix HOL/ex/LexOrds.thy; add to regression

(*
    ID:         $Id$
    Author:     Amine Chaieb, TU Muenchen
*)

header {* Examples for generic reflection and reification *}
theory ReflectionEx
imports Reflection
begin

text{* This theory presents two methods: reify and reflection *}

text{* 
Consider an HOL type 'a, the structure of which is not recongnisable on the theory level. This is the case of bool, arithmetical terms such as int, real etc\<dots> 
In order to implement a simplification on terms of type 'a we often need its structure.
Traditionnaly such simplifications are written in ML, proofs are synthesized.
An other strategy is to declare an HOL-datatype tau and an HOL function (the interpretation) that maps elements of tau to elements of 'a. The functionality of @{text reify} is to compute a term s::tau, which is the representant of t. For this it needs equations for the interpretation.

NB: All the interpretations supported by @{text reify} must have the type @{text "'b list \<Rightarrow> tau \<Rightarrow> 'a"}.
The method @{text reify} can also be told which subterm of the current subgoal should be reified. The general call for @{text reify} is: @{text "reify eqs (t)"}, where @{text eqs} are the defining equations of the interpretation and @{text "(t)"} is an optional parameter which specifies the subterm to which reification should be applied to. If @{text "(t)"} is abscent, @{text reify} tries to reify the whole subgoal.

The method reflection uses @{text reify} and has a very similar signature: @{text "reflection corr_thm eqs (t)"}. Here again @{text eqs} and @{text "(t)"} are as described above and @{text corr_thm} is a thorem proving @{term "I vs (f t) = I vs t"}. We assume that @{text I} is the interpretation and @{text f} is some useful and executable simplification of type @{text "tau \<Rightarrow> tau"}. The method @{text reflection} applies reification and hence the theorem @{term "t = I xs s"} and hence using @{text corr_thm} derives @{term "t = I xs (f s)"}. It then uses normalization by evaluation to prove @{term "f s = s'"} which almost finishes the proof of @{term "t = t'"} where @{term "I xs s' = t'"}.
*}

text{* Example 1 : Propositional formulae and NNF.*}
text{* The type @{text fm} represents simple propositional formulae: *}

datatype form = TrueF | FalseF | Less nat nat |
                And form form | Or form form | Neg form | ExQ form

fun interp :: "form \<Rightarrow> ('a::ord) list \<Rightarrow> bool" where
"interp TrueF e = True" |
"interp FalseF e = False" |
"interp (Less i j) e = (e!i < e!j)" |
"interp (And f1 f2) e = (interp f1 e & interp f2 e)" |
"interp (Or f1 f2) e = (interp f1 e | interp f2 e)" |
"interp (Neg f) e = (~ interp f e)" |
"interp (ExQ f) e = (EX x. interp f (x#e))"

lemmas interp_reify_eqs = interp.simps
declare interp_reify_eqs[reify]

lemma "EX x. x < y & x < z"
  apply (reify )
  oops

datatype fm = And fm fm | Or fm fm | Imp fm fm | Iff fm fm | NOT fm | At nat

consts Ifm :: "fm \<Rightarrow> bool list \<Rightarrow> bool"
primrec
  "Ifm (At n) vs = vs!n"
  "Ifm (And p q) vs = (Ifm p vs \<and> Ifm q vs)"
  "Ifm (Or p q) vs = (Ifm p vs \<or> Ifm q vs)"
  "Ifm (Imp p q) vs = (Ifm p vs \<longrightarrow> Ifm q vs)"
  "Ifm (Iff p q) vs = (Ifm p vs = Ifm q vs)"
  "Ifm (NOT p) vs = (\<not> (Ifm p vs))"

lemma "Q \<longrightarrow> (D & F & ((~ D) & (~ F)))"
apply (reify Ifm.simps)
oops

  text{* Method @{text reify} maps a bool to an fm. For this it needs the 
  semantics of fm, i.e.\ the rewrite rules in @{text Ifm.simps}. *}


  (* You can also just pick up a subterm to reify \<dots> *)
lemma "Q \<longrightarrow> (D & F & ((~ D) & (~ F)))"
apply (reify Ifm.simps ("((~ D) & (~ F))"))
oops

  text{* Let's perform NNF. This is a version that tends to generate disjunctions *}
consts fmsize :: "fm \<Rightarrow> nat"
primrec
  "fmsize (At n) = 1"
  "fmsize (NOT p) = 1 + fmsize p"
  "fmsize (And p q) = 1 + fmsize p + fmsize q"
  "fmsize (Or p q) = 1 + fmsize p + fmsize q"
  "fmsize (Imp p q) = 2 + fmsize p + fmsize q"
  "fmsize (Iff p q) = 2 + 2* fmsize p + 2* fmsize q"

consts nnf :: "fm \<Rightarrow> fm"
recdef nnf "measure fmsize"
  "nnf (At n) = At n"
  "nnf (And p q) = And (nnf p) (nnf q)"
  "nnf (Or p q) = Or (nnf p) (nnf q)"
  "nnf (Imp p q) = Or (nnf (NOT p)) (nnf q)"
  "nnf (Iff p q) = Or (And (nnf p) (nnf q)) (And (nnf (NOT p)) (nnf (NOT q)))"
  "nnf (NOT (And p q)) = Or (nnf (NOT p)) (nnf (NOT q))"
  "nnf (NOT (Or p q)) = And (nnf (NOT p)) (nnf (NOT q))"
  "nnf (NOT (Imp p q)) = And (nnf p) (nnf (NOT q))"
  "nnf (NOT (Iff p q)) = Or (And (nnf p) (nnf (NOT q))) (And (nnf (NOT p)) (nnf q))"
  "nnf (NOT (NOT p)) = nnf p"
  "nnf (NOT p) = NOT p"

  text{* The correctness theorem of nnf: it preserves the semantics of fm *}
lemma nnf[reflection]: "Ifm (nnf p) vs = Ifm p vs"
  by (induct p rule: nnf.induct) auto

  text{* Now let's perform NNF using our @{term nnf} function defined above. First to the whole subgoal. *}
lemma "(\<not> (A = B)) \<and> (B \<longrightarrow> (A \<noteq> (B | C \<and> (B \<longrightarrow> A | D)))) \<longrightarrow> A \<or> B \<and> D"
apply (reflection Ifm.simps)
oops

  text{* Now we specify on which subterm it should be applied*}
lemma "(\<not> (A = B)) \<and> (B \<longrightarrow> (A \<noteq> (B | C \<and> (B \<longrightarrow> A | D)))) \<longrightarrow> A \<or> B \<and> D"
apply (reflection Ifm.simps only: "(B | C \<and> (B \<longrightarrow> A | D))")
oops


  (* Example 2 : Simple arithmetic formulae *)

  text{* The type @{text num} reflects linear expressions over natural number *}
datatype num = C nat | Add num num | Mul nat num | Var nat | CN nat nat num

text{* This is just technical to make recursive definitions easier. *}
consts num_size :: "num \<Rightarrow> nat" 
primrec 
  "num_size (C c) = 1"
  "num_size (Var n) = 1"
  "num_size (Add a b) = 1 + num_size a + num_size b"
  "num_size (Mul c a) = 1 + num_size a"
  "num_size (CN n c a) = 4 + num_size a "

  text{* The semantics of num *}
consts Inum:: "num \<Rightarrow> nat list \<Rightarrow> nat"
primrec 
  Inum_C  : "Inum (C i) vs = i"
  Inum_Var: "Inum (Var n) vs = vs!n"
  Inum_Add: "Inum (Add s t) vs = Inum s vs + Inum t vs "
  Inum_Mul: "Inum (Mul c t) vs = c * Inum t vs "
  Inum_CN : "Inum (CN n c t) vs = c*(vs!n) + Inum t vs "


  text{* Let's reify some nat expressions \<dots> *}
lemma "4 * (2*x + (y::nat)) + f a \<noteq> 0"
  apply (reify Inum.simps ("4 * (2*x + (y::nat)) + f a"))
oops
text{* We're in a bad situation!! x, y and f a have been recongnized as a constants, which is correct but does not correspond to our intuition of the constructor C. It should encapsulate constants, i.e. numbers, i.e. numerals.*}

  text{* So let's leave the Inum_C equation at the end and see what happens \<dots>*}
lemma "4 * (2*x + (y::nat)) \<noteq> 0"
  apply (reify Inum_Var Inum_Add Inum_Mul Inum_CN Inum_C ("4 * (2*x + (y::nat))"))
oops
text{* Hmmm let's specialize @{text Inum_C} with numerals.*}

lemma Inum_number: "Inum (C (number_of t)) vs = number_of t" by simp
lemmas Inum_eqs = Inum_Var Inum_Add Inum_Mul Inum_CN Inum_number

  text{* Second attempt *}
lemma "1 * (2*x + (y::nat)) \<noteq> 0"
  apply (reify Inum_eqs ("1 * (2*x + (y::nat))"))
oops
  text{* That was fine, so let's try an other one\<dots> *}

lemma "1 * (2* x + (y::nat) + 0 + 1) \<noteq> 0"
  apply (reify Inum_eqs ("1 * (2*x + (y::nat) + 0 + 1)"))
oops
  text{* Oh!! 0 is not a variable \<dots> Oh! 0 is not a number_of .. thing. The same for 1. So let's add those equations too *}

lemma Inum_01: "Inum (C 0) vs = 0" "Inum (C 1) vs = 1" "Inum (C(Suc n)) vs = Suc n"
  by simp+

lemmas Inum_eqs'= Inum_eqs Inum_01

text{* Third attempt: *}

lemma "1 * (2*x + (y::nat) + 0 + 1) \<noteq> 0"
  apply (reify Inum_eqs' ("1 * (2*x + (y::nat) + 0 + 1)"))
oops
text{* Okay, let's try reflection. Some simplifications on num follow. You can skim until the main theorem @{text linum} *}
consts lin_add :: "num \<times> num \<Rightarrow> num"
recdef lin_add "measure (\<lambda>(x,y). ((size x) + (size y)))"
  "lin_add (CN n1 c1 r1,CN n2 c2 r2) =
  (if n1=n2 then 
  (let c = c1 + c2
  in (if c=0 then lin_add(r1,r2) else CN n1 c (lin_add (r1,r2))))
  else if n1 \<le> n2 then (CN n1 c1 (lin_add (r1,CN n2 c2 r2))) 
  else (CN n2 c2 (lin_add (CN n1 c1 r1,r2))))"
  "lin_add (CN n1 c1 r1,t) = CN n1 c1 (lin_add (r1, t))"  
  "lin_add (t,CN n2 c2 r2) = CN n2 c2 (lin_add (t,r2))" 
  "lin_add (C b1, C b2) = C (b1+b2)"
  "lin_add (a,b) = Add a b"
lemma lin_add: "Inum (lin_add (t,s)) bs = Inum (Add t s) bs"
apply (induct t s rule: lin_add.induct, simp_all add: Let_def)
apply (case_tac "c1+c2 = 0",case_tac "n1 \<le> n2", simp_all)
by (case_tac "n1 = n2", simp_all add: ring_simps)

consts lin_mul :: "num \<Rightarrow> nat \<Rightarrow> num"
recdef lin_mul "measure size "
  "lin_mul (C j) = (\<lambda> i. C (i*j))"
  "lin_mul (CN n c a) = (\<lambda> i. if i=0 then (C 0) else CN n (i*c) (lin_mul a i))"
  "lin_mul t = (\<lambda> i. Mul i t)"

lemma lin_mul: "Inum (lin_mul t i) bs = Inum (Mul i t) bs"
by (induct t arbitrary: i rule: lin_mul.induct, auto simp add: ring_simps)

consts linum:: "num \<Rightarrow> num"
recdef linum "measure num_size"
  "linum (C b) = C b"
  "linum (Var n) = CN n 1 (C 0)"
  "linum (Add t s) = lin_add (linum t, linum s)"
  "linum (Mul c t) = lin_mul (linum t) c"
  "linum (CN n c t) = lin_add (linum (Mul c (Var n)),linum t)"

lemma linum[reflection] : "Inum (linum t) bs = Inum t bs"
by (induct t rule: linum.induct, simp_all add: lin_mul lin_add)

  text{* Now we can use linum to simplify nat terms using reflection *}
lemma "(Suc (Suc 1)) * (x + (Suc 1)*y) = 3*x + 6*y"
 apply (reflection Inum_eqs' only: "(Suc (Suc 1)) * (x + (Suc 1)*y)") 
oops

  text{* Let's lift this to formulae and see what happens *}

datatype aform = Lt num num  | Eq num num | Ge num num | NEq num num | 
  Conj aform aform | Disj aform aform | NEG aform | T | F
consts linaformsize:: "aform \<Rightarrow> nat"
recdef linaformsize "measure size"
  "linaformsize T = 1"
  "linaformsize F = 1"
  "linaformsize (Lt a b) = 1"
  "linaformsize (Ge a b) = 1"
  "linaformsize (Eq a b) = 1"
  "linaformsize (NEq a b) = 1"
  "linaformsize (NEG p) = 2 + linaformsize p"
  "linaformsize (Conj p q) = 1 + linaformsize p + linaformsize q"
  "linaformsize (Disj p q) = 1 + linaformsize p + linaformsize q"


consts aform :: "aform => nat list => bool"
primrec
  "aform T vs = True"
  "aform F vs = False"
  "aform (Lt a b) vs = (Inum a vs < Inum b vs)"
  "aform (Eq a b) vs = (Inum a vs = Inum b vs)"
  "aform (Ge a b) vs = (Inum a vs \<ge> Inum b vs)"
  "aform (NEq a b) vs = (Inum a vs \<noteq> Inum b vs)"
  "aform (NEG p) vs = (\<not> (aform p vs))"
  "aform (Conj p q) vs = (aform p vs \<and> aform q vs)"
  "aform (Disj p q) vs = (aform p vs \<or> aform q vs)"

  text{* Let's reify and do reflection *}
lemma "(3::nat)*x + t < 0 \<and> (2 * x + y \<noteq> 17)"
 apply (reify Inum_eqs' aform.simps) 
oops

text{* Note that reification handles several interpretations at the same time*}
lemma "(3::nat)*x + t < 0 & x*x + t*x + 3 + 1 = z*t*4*z | x + x + 1 < 0"
 apply (reflection Inum_eqs' aform.simps only:"x + x + 1") 
oops

  text{* For reflection we now define a simple transformation on aform: NNF + linum on atoms *}
consts linaform:: "aform \<Rightarrow> aform"
recdef linaform "measure linaformsize"
  "linaform (Lt s t) = Lt (linum s) (linum t)"
  "linaform (Eq s t) = Eq (linum s) (linum t)"
  "linaform (Ge s t) = Ge (linum s) (linum t)"
  "linaform (NEq s t) = NEq (linum s) (linum t)"
  "linaform (Conj p q) = Conj (linaform p) (linaform q)"
  "linaform (Disj p q) = Disj (linaform p) (linaform q)"
  "linaform (NEG T) = F"
  "linaform (NEG F) = T"
  "linaform (NEG (Lt a b)) = Ge a b"
  "linaform (NEG (Ge a b)) = Lt a b"
  "linaform (NEG (Eq a b)) = NEq a b"
  "linaform (NEG (NEq a b)) = Eq a b"
  "linaform (NEG (NEG p)) = linaform p"
  "linaform (NEG (Conj p q)) = Disj (linaform (NEG p)) (linaform (NEG q))"
  "linaform (NEG (Disj p q)) = Conj (linaform (NEG p)) (linaform (NEG q))"
  "linaform p = p"

lemma linaform: "aform (linaform p) vs = aform p vs"
  by (induct p rule: linaform.induct, auto simp add: linum)

lemma "(((Suc(Suc (Suc 0)))*((x::nat) + (Suc (Suc 0)))) + (Suc (Suc (Suc 0))) * ((Suc(Suc (Suc 0)))*((x::nat) + (Suc (Suc 0))))< 0) \<and> (Suc 0  + Suc 0< 0)"
   apply (reflection Inum_eqs' aform.simps rules: linaform)  
oops

declare linaform[reflection]
lemma "(((Suc(Suc (Suc 0)))*((x::nat) + (Suc (Suc 0)))) + (Suc (Suc (Suc 0))) * ((Suc(Suc (Suc 0)))*((x::nat) + (Suc (Suc 0))))< 0) \<and> (Suc 0  + Suc 0< 0)"
   apply (reflection Inum_eqs' aform.simps)
oops

text{* We now give an example where Interpretaions have 0 or more than only one envornement of different types and show that automatic reification also deals with binding *}
datatype rb = BC bool| BAnd rb rb | BOr rb rb
consts Irb :: "rb \<Rightarrow> bool"
primrec
  "Irb (BC p) = p"
  "Irb (BAnd s t) = (Irb s \<and> Irb t)"
  "Irb (BOr s t) = (Irb s \<or> Irb t)"

lemma "A \<and> (B \<or> D \<and> B) \<and> A \<and> (B \<or> D \<and> B) \<or> A \<and> (B \<or> D \<and> B) \<or> A \<and> (B \<or> D \<and> B)"
apply (reify Irb.simps)
oops


datatype rint = IC int| IVar nat | IAdd rint rint | IMult rint rint | INeg rint | ISub rint rint
consts Irint :: "rint \<Rightarrow> int list \<Rightarrow> int"
primrec
Irint_Var: "Irint (IVar n) vs = vs!n"
Irint_Neg: "Irint (INeg t) vs = - Irint t vs"
Irint_Add: "Irint (IAdd s t) vs = Irint s vs + Irint t vs"
Irint_Sub: "Irint (ISub s t) vs = Irint s vs - Irint t vs"
Irint_Mult: "Irint (IMult s t) vs = Irint s vs * Irint t vs"
Irint_C: "Irint (IC i) vs = i"
lemma Irint_C0: "Irint (IC 0) vs = 0"
  by simp
lemma Irint_C1: "Irint (IC 1) vs = 1"
  by simp
lemma Irint_Cnumberof: "Irint (IC (number_of x)) vs = number_of x"
  by simp
lemmas Irint_simps = Irint_Var Irint_Neg Irint_Add Irint_Sub Irint_Mult Irint_C0 Irint_C1 Irint_Cnumberof 
lemma "(3::int) * x + y*y - 9 + (- z) = 0"
  apply (reify Irint_simps ("(3::int) * x + y*y - 9 + (- z)"))
  oops
datatype rlist = LVar nat| LEmpty| LCons rint rlist | LAppend rlist rlist
consts Irlist :: "rlist \<Rightarrow> int list \<Rightarrow> (int list) list \<Rightarrow> (int list)"
primrec
  "Irlist (LEmpty) is vs = []"
  "Irlist (LVar n) is vs = vs!n"
  "Irlist (LCons i t) is vs = ((Irint i is)#(Irlist t is vs))"
  "Irlist (LAppend s t) is vs = (Irlist s is vs) @ (Irlist t is vs)"
lemma "[(1::int)] = []"
  apply (reify Irlist.simps Irint_simps ("[1]:: int list"))
  oops

lemma "([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs = [y*y - z - 9 + (3::int) * x]"
  apply (reify Irlist.simps Irint_simps ("([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs"))
  oops

datatype rnat = NC nat| NVar nat| NSuc rnat | NAdd rnat rnat | NMult rnat rnat | NNeg rnat | NSub rnat rnat | Nlgth rlist
consts Irnat :: "rnat \<Rightarrow> int list \<Rightarrow> (int list) list \<Rightarrow> nat list \<Rightarrow> nat"
primrec
Irnat_Suc: "Irnat (NSuc t) is ls vs = Suc (Irnat t is ls vs)"
Irnat_Var: "Irnat (NVar n) is ls vs = vs!n"
Irnat_Neg: "Irnat (NNeg t) is ls vs = - Irnat t is ls vs"
Irnat_Add: "Irnat (NAdd s t) is ls vs = Irnat s is ls vs + Irnat t is ls vs"
Irnat_Sub: "Irnat (NSub s t) is ls vs = Irnat s is ls vs - Irnat t is ls vs"
Irnat_Mult: "Irnat (NMult s t) is ls vs = Irnat s is ls vs * Irnat t is ls vs"
Irnat_lgth: "Irnat (Nlgth rxs) is ls vs = length (Irlist rxs is ls)"
Irnat_C: "Irnat (NC i) is ls vs = i"
lemma Irnat_C0: "Irnat (NC 0) is ls vs = 0"
by simp
lemma Irnat_C1: "Irnat (NC 1) is ls vs = 1"
by simp
lemma Irnat_Cnumberof: "Irnat (NC (number_of x)) is ls vs = number_of x"
by simp
lemmas Irnat_simps = Irnat_Suc Irnat_Var Irnat_Neg Irnat_Add Irnat_Sub Irnat_Mult Irnat_lgth
  Irnat_C0 Irnat_C1 Irnat_Cnumberof
lemma "(Suc n) * length (([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs) = length xs"
  apply (reify Irnat_simps Irlist.simps Irint_simps ("(Suc n) *length (([(3::int) * x + y*y - 9 + (- z)] @ []) @ xs)"))
  oops
datatype rifm = RT | RF | RVar nat
  | RNLT rnat rnat | RNILT rnat rint | RNEQ rnat rnat
  |RAnd rifm rifm | ROr rifm rifm | RImp rifm rifm| RIff rifm rifm
  | RNEX rifm | RIEX rifm| RLEX rifm | RNALL rifm | RIALL rifm| RLALL rifm
  | RBEX rifm | RBALL rifm

consts Irifm :: "rifm \<Rightarrow> bool list \<Rightarrow> int list \<Rightarrow> (int list) list \<Rightarrow> nat list \<Rightarrow> bool"
primrec
"Irifm RT ps is ls ns = True"
"Irifm RF ps is ls ns = False"
"Irifm (RVar n) ps is ls ns = ps!n"
"Irifm (RNLT s t) ps is ls ns = (Irnat s is ls ns < Irnat t is ls ns)"
"Irifm (RNILT s t) ps is ls ns = (int (Irnat s is ls ns) < Irint t is)"
"Irifm (RNEQ s t) ps is ls ns = (Irnat s is ls ns = Irnat t is ls ns)"
"Irifm (RAnd p q) ps is ls ns = (Irifm p ps is ls ns \<and> Irifm q ps is ls ns)"
"Irifm (ROr p q) ps is ls ns = (Irifm p ps is ls ns \<or> Irifm q ps is ls ns)"
"Irifm (RImp p q) ps is ls ns = (Irifm p ps is ls ns \<longrightarrow> Irifm q ps is ls ns)"
"Irifm (RIff p q) ps is ls ns = (Irifm p ps is ls ns = Irifm q ps is ls ns)"
"Irifm (RNEX p) ps is ls ns =  (\<exists>x. Irifm p ps is ls (x#ns))"
"Irifm (RIEX p) ps is ls ns =  (\<exists>x. Irifm p ps (x#is) ls ns)"
"Irifm (RLEX p) ps is ls ns =  (\<exists>x. Irifm p ps is (x#ls) ns)"
"Irifm (RBEX p) ps is ls ns =  (\<exists>x. Irifm p (x#ps) is ls ns)"
"Irifm (RNALL p) ps is ls ns = (\<forall>x. Irifm p ps is ls (x#ns))"
"Irifm (RIALL p) ps is ls ns = (\<forall>x. Irifm p ps (x#is) ls ns)"
"Irifm (RLALL p) ps is ls ns = (\<forall>x. Irifm p ps is (x#ls) ns)"
"Irifm (RBALL p) ps is ls ns = (\<forall>x. Irifm p (x#ps) is ls ns)"

lemma " \<forall>x. \<exists>n. ((Suc n) * length (([(3::int) * x + (f t)*y - 9 + (- z)] @ []) @ xs) = length xs) \<and> m < 5*n - length (xs @ [2,3,4,x*z + 8 - y]) \<longrightarrow> (\<exists>p. \<forall>q. p \<and> q \<longrightarrow> r)"
  apply (reify Irifm.simps Irnat_simps Irlist.simps Irint_simps)
oops


  (* An example for equations containing type variables *)	
datatype prod = Zero | One | Var nat | Mul prod prod 
  | Pw prod nat | PNM nat nat prod
consts Iprod :: " prod \<Rightarrow> ('a::{ordered_idom,recpower}) list \<Rightarrow>'a" 
primrec
  "Iprod Zero vs = 0"
  "Iprod One vs = 1"
  "Iprod (Var n) vs = vs!n"
  "Iprod (Mul a b) vs = (Iprod a vs * Iprod b vs)"
  "Iprod (Pw a n) vs = ((Iprod a vs) ^ n)"
  "Iprod (PNM n k t) vs = (vs ! n)^k * Iprod t vs"
consts prodmul:: "prod \<times> prod \<Rightarrow> prod"
datatype sgn = Pos prod | Neg prod | ZeroEq prod | NZeroEq prod | Tr | F 
  | Or sgn sgn | And sgn sgn

consts Isgn :: " sgn \<Rightarrow> ('a::{ordered_idom, recpower}) list \<Rightarrow>bool"
primrec 
  "Isgn Tr vs = True"
  "Isgn F vs = False"
  "Isgn (ZeroEq t) vs = (Iprod t vs = 0)"
  "Isgn (NZeroEq t) vs = (Iprod t vs \<noteq> 0)"
  "Isgn (Pos t) vs = (Iprod t vs > 0)"
  "Isgn (Neg t) vs = (Iprod t vs < 0)"
  "Isgn (And p q) vs = (Isgn p vs \<and> Isgn q vs)"
  "Isgn (Or p q) vs = (Isgn p vs \<or> Isgn q vs)"

lemmas eqs = Isgn.simps Iprod.simps

lemma "(x::'a::{ordered_idom, recpower})^4 * y * z * y^2 * z^23 > 0"
  apply (reify eqs)
  oops

end