(* Title: HOL/Library/Quotient_Option.thy
Author: Cezary Kaliszyk and Christian Urban
*)
header {* Quotient infrastructure for the option type *}
theory Quotient_Option
imports Main Quotient_Syntax
begin
subsection {* Rules for the Quotient package *}
lemma rel_option_map1:
"rel_option R (map_option f x) y \<longleftrightarrow> rel_option (\<lambda>x. R (f x)) x y"
by (simp add: rel_option_iff split: option.split)
lemma rel_option_map2:
"rel_option R x (map_option f y) \<longleftrightarrow> rel_option (\<lambda>x y. R x (f y)) x y"
by (simp add: rel_option_iff split: option.split)
declare
map_option.id [id_simps]
rel_option_eq [id_simps]
lemma reflp_rel_option:
"reflp R \<Longrightarrow> reflp (rel_option R)"
unfolding reflp_def split_option_all by simp
lemma option_symp:
"symp R \<Longrightarrow> symp (rel_option R)"
unfolding symp_def split_option_all
by (simp only: option.rel_inject option.rel_distinct) fast
lemma option_transp:
"transp R \<Longrightarrow> transp (rel_option R)"
unfolding transp_def split_option_all
by (simp only: option.rel_inject option.rel_distinct) fast
lemma option_equivp [quot_equiv]:
"equivp R \<Longrightarrow> equivp (rel_option R)"
by (blast intro: equivpI reflp_rel_option option_symp option_transp elim: equivpE)
lemma option_quotient [quot_thm]:
assumes "Quotient3 R Abs Rep"
shows "Quotient3 (rel_option R) (map_option Abs) (map_option Rep)"
apply (rule Quotient3I)
apply (simp_all add: option.map_comp comp_def option.map_id[unfolded id_def] rel_option_eq rel_option_map1 rel_option_map2 Quotient3_abs_rep [OF assms] Quotient3_rel_rep [OF assms])
using Quotient3_rel [OF assms]
apply (simp add: rel_option_iff split: option.split)
done
declare [[mapQ3 option = (rel_option, option_quotient)]]
lemma option_None_rsp [quot_respect]:
assumes q: "Quotient3 R Abs Rep"
shows "rel_option R None None"
by (rule None_transfer)
lemma option_Some_rsp [quot_respect]:
assumes q: "Quotient3 R Abs Rep"
shows "(R ===> rel_option R) Some Some"
by (rule Some_transfer)
lemma option_None_prs [quot_preserve]:
assumes q: "Quotient3 R Abs Rep"
shows "map_option Abs None = None"
by (rule Option.option.map(1))
lemma option_Some_prs [quot_preserve]:
assumes q: "Quotient3 R Abs Rep"
shows "(Rep ---> map_option Abs) Some = Some"
apply(simp add: fun_eq_iff)
apply(simp add: Quotient3_abs_rep[OF q])
done
end