src/HOL/Library/Quotient_Sum.thy
author huffman
Tue, 04 Mar 2014 14:00:59 -0800
changeset 55909 df6133adb63f
parent 55564 e81ee43ab290
child 55931 62156e694f3d
permissions -rw-r--r--
tuned proof script

(*  Title:      HOL/Library/Quotient_Sum.thy
    Author:     Cezary Kaliszyk and Christian Urban
*)

header {* Quotient infrastructure for the sum type *}

theory Quotient_Sum
imports Main Quotient_Syntax
begin

subsection {* Rules for the Quotient package *}

lemma sum_rel_map1:
  "sum_rel R1 R2 (sum_map f1 f2 x) y \<longleftrightarrow> sum_rel (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y"
  by (simp add: sum_rel_def split: sum.split)

lemma sum_rel_map2:
  "sum_rel R1 R2 x (sum_map f1 f2 y) \<longleftrightarrow> sum_rel (\<lambda>x y. R1 x (f1 y)) (\<lambda>x y. R2 x (f2 y)) x y"
  by (simp add: sum_rel_def split: sum.split)

lemma sum_map_id [id_simps]:
  "sum_map id id = id"
  by (simp add: id_def sum_map.identity fun_eq_iff)

lemma sum_rel_eq [id_simps]:
  "sum_rel (op =) (op =) = (op =)"
  by (simp add: sum_rel_def fun_eq_iff split: sum.split)

lemma reflp_sum_rel:
  "reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (sum_rel R1 R2)"
  unfolding reflp_def split_sum_all sum_rel_simps by fast

lemma sum_symp:
  "symp R1 \<Longrightarrow> symp R2 \<Longrightarrow> symp (sum_rel R1 R2)"
  unfolding symp_def split_sum_all sum_rel_simps by fast

lemma sum_transp:
  "transp R1 \<Longrightarrow> transp R2 \<Longrightarrow> transp (sum_rel R1 R2)"
  unfolding transp_def split_sum_all sum_rel_simps by fast

lemma sum_equivp [quot_equiv]:
  "equivp R1 \<Longrightarrow> equivp R2 \<Longrightarrow> equivp (sum_rel R1 R2)"
  by (blast intro: equivpI reflp_sum_rel sum_symp sum_transp elim: equivpE)

lemma sum_quotient [quot_thm]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "Quotient3 (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
  apply (rule Quotient3I)
  apply (simp_all add: sum_map.compositionality comp_def sum_map.identity sum_rel_eq sum_rel_map1 sum_rel_map2
    Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2])
  using Quotient3_rel [OF q1] Quotient3_rel [OF q2]
  apply (simp add: sum_rel_def comp_def split: sum.split)
  done

declare [[mapQ3 sum = (sum_rel, sum_quotient)]]

lemma sum_Inl_rsp [quot_respect]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(R1 ===> sum_rel R1 R2) Inl Inl"
  by auto

lemma sum_Inr_rsp [quot_respect]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(R2 ===> sum_rel R1 R2) Inr Inr"
  by auto

lemma sum_Inl_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
  apply(simp add: fun_eq_iff)
  apply(simp add: Quotient3_abs_rep[OF q1])
  done

lemma sum_Inr_prs [quot_preserve]:
  assumes q1: "Quotient3 R1 Abs1 Rep1"
  assumes q2: "Quotient3 R2 Abs2 Rep2"
  shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
  apply(simp add: fun_eq_iff)
  apply(simp add: Quotient3_abs_rep[OF q2])
  done

end