(* Title: ZF/IMP/Denotation.thy
Author: Heiko Loetzbeyer and Robert Sandner, TU München
*)
section {* Denotational semantics of expressions and commands *}
theory Denotation imports Com begin
subsection {* Definitions *}
consts
A :: "i => i => i"
B :: "i => i => i"
C :: "i => i"
definition
Gamma :: "[i,i,i] => i" ("\<Gamma>") where
"\<Gamma>(b,cden) ==
(\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
{io \<in> id(loc->nat). B(b,fst(io))=0})"
primrec
"A(N(n), sigma) = n"
"A(X(x), sigma) = sigma`x"
"A(Op1(f,a), sigma) = f`A(a,sigma)"
"A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
primrec
"B(true, sigma) = 1"
"B(false, sigma) = 0"
"B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
"B(noti(b), sigma) = not(B(b,sigma))"
"B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
"B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"
primrec
"C(\<SKIP>) = id(loc->nat)"
"C(x \<ASSN> a) =
{io \<in> (loc->nat) \<times> (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
"C(c0\<SEQ> c1) = C(c1) O C(c0)"
"C(\<IF> b \<THEN> c0 \<ELSE> c1) =
{io \<in> C(c0). B(b,fst(io)) = 1} \<union> {io \<in> C(c1). B(b,fst(io)) = 0}"
"C(\<WHILE> b \<DO> c) = lfp((loc->nat) \<times> (loc->nat), \<Gamma>(b,C(c)))"
subsection {* Misc lemmas *}
lemma A_type [TC]: "[|a \<in> aexp; sigma \<in> loc->nat|] ==> A(a,sigma) \<in> nat"
by (erule aexp.induct) simp_all
lemma B_type [TC]: "[|b \<in> bexp; sigma \<in> loc->nat|] ==> B(b,sigma) \<in> bool"
by (erule bexp.induct, simp_all)
lemma C_subset: "c \<in> com ==> C(c) \<subseteq> (loc->nat) \<times> (loc->nat)"
apply (erule com.induct)
apply simp_all
apply (blast dest: lfp_subset [THEN subsetD])+
done
lemma C_type_D [dest]:
"[| <x,y> \<in> C(c); c \<in> com |] ==> x \<in> loc->nat & y \<in> loc->nat"
by (blast dest: C_subset [THEN subsetD])
lemma C_type_fst [dest]: "[| x \<in> C(c); c \<in> com |] ==> fst(x) \<in> loc->nat"
by (auto dest!: C_subset [THEN subsetD])
lemma Gamma_bnd_mono:
"cden \<subseteq> (loc->nat) \<times> (loc->nat)
==> bnd_mono ((loc->nat) \<times> (loc->nat), \<Gamma>(b,cden))"
by (unfold bnd_mono_def Gamma_def) blast
end