(* Title: Pure/Isar/obtain.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
License: GPL (GNU GENERAL PUBLIC LICENSE)
The 'obtain' language element -- generalized existence at the level of
proof texts.
<chain_facts>
obtain x where "P x" <proof> ==
have "!!thesis. (!!x. P x ==> thesis) ==> thesis"
proof succeed
fix thesis
assume that [intro?]: "!!x. P x ==> thesis"
<chain_facts> show thesis <proof (insert that)>
qed
fix x assm (obtained) "P x"
*)
signature OBTAIN =
sig
val obtain: (string list * string option) list ->
((string * Proof.context attribute list) * (string * (string list * string list)) list) list
-> (Proof.context -> string * (string * thm list) list -> unit) *
(Proof.context -> thm -> unit) -> Proof.state -> Proof.state Seq.seq
val obtain_i: (string list * typ option) list ->
((string * Proof.context attribute list) * (term * (term list * term list)) list) list
-> (Proof.context -> string * (string * thm list) list -> unit) *
(Proof.context -> thm -> unit) -> Proof.state -> Proof.state Seq.seq
end;
structure Obtain: OBTAIN =
struct
(** export_obtain **)
fun export_obtain state parms rule _ cprops thm =
let
val {sign, prop, maxidx, ...} = Thm.rep_thm thm;
val cparms = map (Thm.cterm_of sign) parms;
val thm' = thm
|> Drule.implies_intr_goals cprops
|> Drule.forall_intr_list cparms
|> Drule.forall_elim_vars (maxidx + 1);
val elim_tacs = replicate (length cprops) (Tactic.etac Drule.triv_goal);
val concl = Logic.strip_assums_concl prop;
val bads = parms inter (Term.term_frees concl);
in
if not (null bads) then
raise Proof.STATE ("Conclusion contains obtained parameters: " ^
space_implode " " (map (ProofContext.string_of_term (Proof.context_of state)) bads), state)
else if not (ObjectLogic.is_judgment sign (Logic.strip_assums_concl prop)) then
raise Proof.STATE ("Conclusions of 'obtain' context must be object-logic judgments", state)
else (Tactic.rtac thm' THEN' RANGE elim_tacs) 1 rule
end;
(** obtain(_i) **)
val thatN = "that";
fun gen_obtain prep_vars prep_propp raw_vars raw_asms print state =
let
val _ = Proof.assert_forward_or_chain state;
val chain_facts = if Proof.is_chain state then Proof.the_facts state else [];
val thy = Proof.theory_of state;
val sign = Theory.sign_of thy;
(*obtain vars*)
val (vars_ctxt, vars) = foldl_map prep_vars (Proof.context_of state, raw_vars);
val xs = flat (map fst vars);
val fix_ctxt = vars_ctxt |> ProofContext.fix_i vars;
(*obtain asms*)
val (asms_ctxt, proppss) = prep_propp (fix_ctxt, map snd raw_asms);
val asm_props = flat (map (map fst) proppss);
val asms = map fst raw_asms ~~ proppss;
val _ = ProofContext.warn_extra_tfrees fix_ctxt asms_ctxt;
(*obtain statements*)
val thesisN = Term.variant xs (Syntax.internal AutoBind.thesisN);
val bind_thesis = ProofContext.bind_skolem fix_ctxt [thesisN];
val bound_thesis = bind_thesis (ObjectLogic.fixed_judgment sign thesisN);
val bound_thesis_raw as (bound_thesis_name, _) =
Term.dest_Free (bind_thesis (Free (thesisN, propT)));
val bound_thesis_var =
foldl_aterms (fn (v, Free (x, T)) => if x = bound_thesis_name then (x, T) else v
| (v, t) => v) (bound_thesis_raw, bound_thesis);
fun occs_var x = Library.get_first (fn t =>
ProofContext.find_free t (ProofContext.get_skolem fix_ctxt x)) asm_props;
val raw_parms = map occs_var xs;
val parms = mapfilter I raw_parms;
val parm_names =
mapfilter (fn (Some (Free a), x) => Some (a, x) | _ => None) (raw_parms ~~ xs);
val that_prop =
Term.list_all_free (map #1 parm_names, Logic.list_implies (asm_props, bound_thesis))
|> Library.curry Logic.list_rename_params (map #2 parm_names);
val obtain_prop =
Logic.list_rename_params ([AutoBind.thesisN],
Term.list_all_free ([bound_thesis_var], Logic.mk_implies (that_prop, bound_thesis)));
fun after_qed st = st
|> Method.local_qed false None print
|> Seq.map (fn st' => st'
|> Proof.fix_i vars
|> Proof.assm_i (export_obtain state parms (Proof.the_fact st')) asms);
in
state
|> Proof.enter_forward
|> Proof.have_i Seq.single true [(("", []), [(obtain_prop, ([], []))])]
|> Method.proof (Some (Method.Basic (K Method.succeed))) |> Seq.hd
|> Proof.fix_i [([thesisN], None)]
|> Proof.assume_i [((thatN, [ContextRules.intro_query_local None]), [(that_prop, ([], []))])]
|> (fn state' =>
state'
|> Proof.from_facts chain_facts
|> Proof.show_i (K I) after_qed false [(("", []), [(bound_thesis, ([], []))])] false
|> Method.refine (Method.Basic (K (Method.insert (Proof.the_facts state')))))
end;
val obtain = gen_obtain ProofContext.read_vars ProofContext.read_propp;
val obtain_i = gen_obtain ProofContext.cert_vars ProofContext.cert_propp;
end;