(* Title: HOL/Auth/ZhouGollmann.thy
Author: Giampaolo Bella and L C Paulson, Cambridge Univ Computer Lab
Copyright 2003 University of Cambridge
The protocol of
Jianying Zhou and Dieter Gollmann,
A Fair Non-Repudiation Protocol,
Security and Privacy 1996 (Oakland)
55-61
*)
theory ZhouGollmann imports Public begin
abbreviation
TTP :: agent where "TTP == Server"
abbreviation f_sub :: nat where "f_sub == 5"
abbreviation f_nro :: nat where "f_nro == 2"
abbreviation f_nrr :: nat where "f_nrr == 3"
abbreviation f_con :: nat where "f_con == 4"
definition broken :: "agent set" where
\<comment>\<open>the compromised honest agents; TTP is included as it's not allowed to
use the protocol\<close>
"broken == bad - {Spy}"
declare broken_def [simp]
inductive_set zg :: "event list set"
where
Nil: "[] \<in> zg"
| Fake: "[| evsf \<in> zg; X \<in> synth (analz (spies evsf)) |]
==> Says Spy B X # evsf \<in> zg"
| Reception: "[| evsr \<in> zg; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> zg"
(*L is fresh for honest agents.
We don't require K to be fresh because we don't bother to prove secrecy!
We just assume that the protocol's objective is to deliver K fairly,
rather than to keep M secret.*)
| ZG1: "[| evs1 \<in> zg; Nonce L \<notin> used evs1; C = Crypt K (Number m);
K \<in> symKeys;
NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>|]
==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> # evs1 \<in> zg"
(*B must check that NRO is A's signature to learn the sender's name*)
| ZG2: "[| evs2 \<in> zg;
Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs2;
NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>|]
==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> # evs2 \<in> zg"
(*A must check that NRR is B's signature to learn the sender's name;
without spy, the matching label would be enough*)
| ZG3: "[| evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs3;
Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs3;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>|]
==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace>
# evs3 \<in> zg"
(*TTP checks that sub_K is A's signature to learn who issued K, then
gives credentials to A and B. The Notes event models the availability of
the credentials, but the act of fetching them is not modelled. We also
give con_K to the Spy. This makes the threat model more dangerous, while
also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
@{term "K \<noteq> priK TTP"}. *)
| ZG4: "[| evs4 \<in> zg; K \<in> symKeys;
Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace>
\<in> set evs4;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
con_K = Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B,
Nonce L, Key K\<rbrace>|]
==> Says TTP Spy con_K
#
Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
# evs4 \<in> zg"
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
declare symKey_neq_priEK [simp]
declare symKey_neq_priEK [THEN not_sym, simp]
text\<open>A "possibility property": there are traces that reach the end\<close>
lemma "[|A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys|] ==>
\<exists>L. \<exists>evs \<in> zg.
Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K,
Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>\<rbrace>
\<in> set evs"
apply (intro exI bexI)
apply (rule_tac [2] zg.Nil
[THEN zg.ZG1, THEN zg.Reception [of _ A B],
THEN zg.ZG2, THEN zg.Reception [of _ B A],
THEN zg.ZG3, THEN zg.Reception [of _ A TTP],
THEN zg.ZG4])
apply (basic_possibility, auto)
done
subsection \<open>Basic Lemmas\<close>
lemma Gets_imp_Says:
"[| Gets B X \<in> set evs; evs \<in> zg |] ==> \<exists>A. Says A B X \<in> set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
lemma Gets_imp_knows_Spy:
"[| Gets B X \<in> set evs; evs \<in> zg |] ==> X \<in> spies evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
text\<open>Lets us replace proofs about @{term "used evs"} by simpler proofs
about @{term "parts (spies evs)"}.\<close>
lemma Crypt_used_imp_spies:
"[| Crypt K X \<in> used evs; evs \<in> zg |]
==> Crypt K X \<in> parts (spies evs)"
apply (erule rev_mp)
apply (erule zg.induct)
apply (simp_all add: parts_insert_knows_A)
done
lemma Notes_TTP_imp_Gets:
"[|Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
\<in> set evs;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
evs \<in> zg|]
==> Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
text\<open>For reasoning about C, which is encrypted in message ZG2\<close>
lemma ZG2_msg_in_parts_spies:
"[|Gets B \<lbrace>F, B', L, C, X\<rbrace> \<in> set evs; evs \<in> zg|]
==> C \<in> parts (spies evs)"
by (blast dest: Gets_imp_Says)
(*classical regularity lemma on priK*)
lemma Spy_see_priK [simp]:
"evs \<in> zg ==> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
text\<open>So that blast can use it too\<close>
declare Spy_see_priK [THEN [2] rev_iffD1, dest!]
lemma Spy_analz_priK [simp]:
"evs \<in> zg ==> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
by auto
subsection\<open>About NRO: Validity for @{term B}\<close>
text\<open>Below we prove that if @{term NRO} exists then @{term A} definitely
sent it, provided @{term A} is not broken.\<close>
text\<open>Strong conclusion for a good agent\<close>
lemma NRO_validity_good:
"[|NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
NRO \<in> parts (spies evs);
A \<notin> bad; evs \<in> zg |]
==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
lemma NRO_sender:
"[|Says A' B \<lbrace>n, b, l, C, Crypt (priK A) X\<rbrace> \<in> set evs; evs \<in> zg|]
==> A' \<in> {A,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text\<open>Holds also for @{term "A = Spy"}!\<close>
theorem NRO_validity:
"[|Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs;
NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
A \<notin> broken; evs \<in> zg |]
==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule NRO_sender, auto)
txt\<open>We are left with the case where the sender is @{term Spy} and not
equal to @{term A}, because @{term "A \<notin> bad"}.
Thus theorem \<open>NRO_validity_good\<close> applies.\<close>
apply (blast dest: NRO_validity_good [OF refl])
done
subsection\<open>About NRR: Validity for @{term A}\<close>
text\<open>Below we prove that if @{term NRR} exists then @{term B} definitely
sent it, provided @{term B} is not broken.\<close>
text\<open>Strong conclusion for a good agent\<close>
lemma NRR_validity_good:
"[|NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
NRR \<in> parts (spies evs);
B \<notin> bad; evs \<in> zg |]
==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
lemma NRR_sender:
"[|Says B' A \<lbrace>n, a, l, Crypt (priK B) X\<rbrace> \<in> set evs; evs \<in> zg|]
==> B' \<in> {B,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text\<open>Holds also for @{term "B = Spy"}!\<close>
theorem NRR_validity:
"[|Says B' A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
B \<notin> broken; evs \<in> zg|]
==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
apply clarify
apply (frule NRR_sender, auto)
txt\<open>We are left with the case where @{term "B' = Spy"} and @{term "B' \<noteq> B"},
i.e. @{term "B \<notin> bad"}, when we can apply \<open>NRR_validity_good\<close>.\<close>
apply (blast dest: NRR_validity_good [OF refl])
done
subsection\<open>Proofs About @{term sub_K}\<close>
text\<open>Below we prove that if @{term sub_K} exists then @{term A} definitely
sent it, provided @{term A} is not broken.\<close>
text\<open>Strong conclusion for a good agent\<close>
lemma sub_K_validity_good:
"[|sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
sub_K \<in> parts (spies evs);
A \<notin> bad; evs \<in> zg |]
==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>Fake\<close>
apply (blast dest!: Fake_parts_sing_imp_Un)
done
lemma sub_K_sender:
"[|Says A' TTP \<lbrace>n, b, l, k, Crypt (priK A) X\<rbrace> \<in> set evs; evs \<in> zg|]
==> A' \<in> {A,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text\<open>Holds also for @{term "A = Spy"}!\<close>
theorem sub_K_validity:
"[|Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
A \<notin> broken; evs \<in> zg |]
==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule sub_K_sender, auto)
txt\<open>We are left with the case where the sender is @{term Spy} and not
equal to @{term A}, because @{term "A \<notin> bad"}.
Thus theorem \<open>sub_K_validity_good\<close> applies.\<close>
apply (blast dest: sub_K_validity_good [OF refl])
done
subsection\<open>Proofs About @{term con_K}\<close>
text\<open>Below we prove that if @{term con_K} exists, then @{term TTP} has it,
and therefore @{term A} and @{term B}) can get it too. Moreover, we know
that @{term A} sent @{term sub_K}\<close>
lemma con_K_validity:
"[|con_K \<in> used evs;
con_K = Crypt (priK TTP)
\<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>;
evs \<in> zg |]
==> Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
\<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>Fake\<close>
apply (blast dest!: Fake_parts_sing_imp_Un)
txt\<open>ZG2\<close>
apply (blast dest: parts_cut)
done
text\<open>If @{term TTP} holds @{term con_K} then @{term A} sent
@{term sub_K}. We assume that @{term A} is not broken. Importantly, nothing
needs to be assumed about the form of @{term con_K}!\<close>
lemma Notes_TTP_imp_Says_A:
"[|Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
\<in> set evs;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
A \<notin> broken; evs \<in> zg|]
==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>ZG4\<close>
apply clarify
apply (rule sub_K_validity, auto)
done
text\<open>If @{term con_K} exists, then @{term A} sent @{term sub_K}. We again
assume that @{term A} is not broken.\<close>
theorem B_sub_K_validity:
"[|con_K \<in> used evs;
con_K = Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B,
Nonce L, Key K\<rbrace>;
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
A \<notin> broken; evs \<in> zg|]
==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
subsection\<open>Proving fairness\<close>
text\<open>Cannot prove that, if @{term B} has NRO, then @{term A} has her NRR.
It would appear that @{term B} has a small advantage, though it is
useless to win disputes: @{term B} needs to present @{term con_K} as well.\<close>
text\<open>Strange: unicity of the label protects @{term A}?\<close>
lemma A_unicity:
"[|NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
NRO \<in> parts (spies evs);
Says A B \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M', NRO'\<rbrace>
\<in> set evs;
A \<notin> bad; evs \<in> zg |]
==> M'=M"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
txt\<open>ZG1: freshness\<close>
apply (blast dest: parts.Body)
done
text\<open>Fairness lemma: if @{term sub_K} exists, then @{term A} holds
NRR. Relies on unicity of labels.\<close>
lemma sub_K_implies_NRR:
"[| NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, Crypt K M\<rbrace>;
sub_K \<in> parts (spies evs);
NRO \<in> parts (spies evs);
sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
A \<notin> bad; evs \<in> zg |]
==> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
apply clarify
apply hypsubst_thin
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>Fake\<close>
apply blast
txt\<open>ZG1: freshness\<close>
apply (blast dest: parts.Body)
txt\<open>ZG3\<close>
apply (blast dest: A_unicity [OF refl])
done
lemma Crypt_used_imp_L_used:
"[| Crypt (priK TTP) \<lbrace>F, A, B, L, K\<rbrace> \<in> used evs; evs \<in> zg |]
==> L \<in> used evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
txt\<open>Fake\<close>
apply (blast dest!: Fake_parts_sing_imp_Un)
txt\<open>ZG2: freshness\<close>
apply (blast dest: parts.Body)
done
text\<open>Fairness for @{term A}: if @{term con_K} and @{term NRO} exist,
then @{term A} holds NRR. @{term A} must be uncompromised, but there is no
assumption about @{term B}.\<close>
theorem A_fairness_NRO:
"[|con_K \<in> used evs;
NRO \<in> parts (spies evs);
con_K = Crypt (priK TTP)
\<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>;
NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, Crypt K M\<rbrace>;
A \<notin> bad; evs \<in> zg |]
==> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>Fake\<close>
apply (simp add: parts_insert_knows_A)
apply (blast dest: Fake_parts_sing_imp_Un)
txt\<open>ZG1\<close>
apply (blast dest: Crypt_used_imp_L_used)
txt\<open>ZG2\<close>
apply (blast dest: parts_cut)
txt\<open>ZG4\<close>
apply (blast intro: sub_K_implies_NRR [OF refl]
dest: Gets_imp_knows_Spy [THEN parts.Inj])
done
text\<open>Fairness for @{term B}: NRR exists at all, then @{term B} holds NRO.
@{term B} must be uncompromised, but there is no assumption about @{term
A}.\<close>
theorem B_fairness_NRR:
"[|NRR \<in> used evs;
NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
B \<notin> bad; evs \<in> zg |]
==> Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt\<open>Fake\<close>
apply (blast dest!: Fake_parts_sing_imp_Un)
txt\<open>ZG2\<close>
apply (blast dest: parts_cut)
done
text\<open>If @{term con_K} exists at all, then @{term B} can get it, by \<open>con_K_validity\<close>. Cannot conclude that also NRO is available to @{term B},
because if @{term A} were unfair, @{term A} could build message 3 without
building message 1, which contains NRO.\<close>
end