src/ZF/QPair.thy
author wenzelm
Fri, 12 Jun 1998 17:05:04 +0200
changeset 5031 e2280a1eadb2
parent 3940 1d5bee4d047f
child 6093 87bf8c03b169
permissions -rw-r--r--
tuned exports; added Thy;

(*  Title:      ZF/qpair.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum +

global

consts
  QPair     :: [i, i] => i                      ("<(_;/ _)>")
  qfst,qsnd :: i => i
  qsplit    :: [[i, i] => 'a, i] => 'a::logic  (*for pattern-matching*)
  qconverse :: i => i
  QSigma    :: [i, i => i] => i

  "<+>"     :: [i,i]=>i                         (infixr 65)
  QInl,QInr :: i=>i
  qcase     :: [i=>i, i=>i, i]=>i

syntax
  "@QSUM"   :: [idt, i, i] => i               ("(3QSUM _:_./ _)" 10)
  "<*>"     :: [i, i] => i                      (infixr 80)

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

local

defs
  QPair_def       "<a;b> == a+b"
  qfst_def        "qfst(p) == THE a. EX b. p=<a;b>"
  qsnd_def        "qsnd(p) == THE b. EX a. p=<a;b>"
  qsplit_def      "qsplit(c,p) == c(qfst(p), qsnd(p))"

  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", "op <*>"))];