src/HOL/ex/MT.thy
author chaieb
Tue, 03 Jul 2007 17:50:00 +0200
changeset 23548 e25991f126ce
parent 17289 8608f7a881eb
child 24326 3e9d3ba894b8
permissions -rw-r--r--
Generalized case for atoms. Selection of environment lists is allowed more than once.

(*  Title:      HOL/ex/mt.thy
    ID:         $Id$
    Author:     Jacob Frost, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Based upon the article
    Robin Milner and Mads Tofte,
    Co-induction in Relational Semantics,
    Theoretical Computer Science 87 (1991), pages 209-220.

Written up as
    Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
    Report 308, Computer Lab, University of Cambridge (1993).
*)

theory MT
imports Main
begin

typedecl Const

typedecl ExVar
typedecl Ex

typedecl TyConst
typedecl Ty

typedecl Clos
typedecl Val

typedecl ValEnv
typedecl TyEnv

consts
  c_app :: "[Const, Const] => Const"

  e_const :: "Const => Ex"
  e_var :: "ExVar => Ex"
  e_fn :: "[ExVar, Ex] => Ex" ("fn _ => _" [0,51] 1000)
  e_fix :: "[ExVar, ExVar, Ex] => Ex" ("fix _ ( _ ) = _" [0,51,51] 1000)
  e_app :: "[Ex, Ex] => Ex" ("_ @@ _" [51,51] 1000)
  e_const_fst :: "Ex => Const"

  t_const :: "TyConst => Ty"
  t_fun :: "[Ty, Ty] => Ty" ("_ -> _" [51,51] 1000)

  v_const :: "Const => Val"
  v_clos :: "Clos => Val"

  ve_emp :: ValEnv
  ve_owr :: "[ValEnv, ExVar, Val] => ValEnv" ("_ + { _ |-> _ }" [36,0,0] 50)
  ve_dom :: "ValEnv => ExVar set"
  ve_app :: "[ValEnv, ExVar] => Val"

  clos_mk :: "[ExVar, Ex, ValEnv] => Clos" ("<| _ , _ , _ |>" [0,0,0] 1000)

  te_emp :: TyEnv
  te_owr :: "[TyEnv, ExVar, Ty] => TyEnv" ("_ + { _ |=> _ }" [36,0,0] 50)
  te_app :: "[TyEnv, ExVar] => Ty"
  te_dom :: "TyEnv => ExVar set"

  eval_fun :: "((ValEnv * Ex) * Val) set => ((ValEnv * Ex) * Val) set"
  eval_rel :: "((ValEnv * Ex) * Val) set"
  eval :: "[ValEnv, Ex, Val] => bool" ("_ |- _ ---> _" [36,0,36] 50)

  elab_fun :: "((TyEnv * Ex) * Ty) set => ((TyEnv * Ex) * Ty) set"
  elab_rel :: "((TyEnv * Ex) * Ty) set"
  elab :: "[TyEnv, Ex, Ty] => bool" ("_ |- _ ===> _" [36,0,36] 50)

  isof :: "[Const, Ty] => bool" ("_ isof _" [36,36] 50)
  isof_env :: "[ValEnv,TyEnv] => bool" ("_ isofenv _")

  hasty_fun :: "(Val * Ty) set => (Val * Ty) set"
  hasty_rel :: "(Val * Ty) set"
  hasty :: "[Val, Ty] => bool" ("_ hasty _" [36,36] 50)
  hasty_env :: "[ValEnv,TyEnv] => bool" ("_ hastyenv _ " [36,36] 35)

axioms

(*
  Expression constructors must be injective, distinct and it must be possible
  to do induction over expressions.
*)

(* All the constructors are injective *)

  e_const_inj: "e_const(c1) = e_const(c2) ==> c1 = c2"
  e_var_inj: "e_var(ev1) = e_var(ev2) ==> ev1 = ev2"
  e_fn_inj: "fn ev1 => e1 = fn ev2 => e2 ==> ev1 = ev2 & e1 = e2"
  e_fix_inj:
    " fix ev11e(v12) = e1 = fix ev21(ev22) = e2 ==>
     ev11 = ev21 & ev12 = ev22 & e1 = e2
   "
  e_app_inj: "e11 @@ e12 = e21 @@ e22 ==> e11 = e21 & e12 = e22"

(* All constructors are distinct *)

  e_disj_const_var: "~e_const(c) = e_var(ev)"
  e_disj_const_fn: "~e_const(c) = fn ev => e"
  e_disj_const_fix: "~e_const(c) = fix ev1(ev2) = e"
  e_disj_const_app: "~e_const(c) = e1 @@ e2"
  e_disj_var_fn: "~e_var(ev1) = fn ev2 => e"
  e_disj_var_fix: "~e_var(ev) = fix ev1(ev2) = e"
  e_disj_var_app: "~e_var(ev) = e1 @@ e2"
  e_disj_fn_fix: "~fn ev1 => e1 = fix ev21(ev22) = e2"
  e_disj_fn_app: "~fn ev1 => e1 = e21 @@ e22"
  e_disj_fix_app: "~fix ev11(ev12) = e1 = e21 @@ e22"

(* Strong elimination, induction on expressions  *)

  e_ind:
    " [|  !!ev. P(e_var(ev));
         !!c. P(e_const(c));
         !!ev e. P(e) ==> P(fn ev => e);
         !!ev1 ev2 e. P(e) ==> P(fix ev1(ev2) = e);
         !!e1 e2. P(e1) ==> P(e2) ==> P(e1 @@ e2)
     |] ==>
   P(e)
   "

(* Types - same scheme as for expressions *)

(* All constructors are injective *)

  t_const_inj: "t_const(c1) = t_const(c2) ==> c1 = c2"
  t_fun_inj: "t11 -> t12 = t21 -> t22 ==> t11 = t21 & t12 = t22"

(* All constructors are distinct, not needed so far ... *)

(* Strong elimination, induction on types *)

 t_ind:
    "[| !!p. P(t_const p); !!t1 t2. P(t1) ==> P(t2) ==> P(t_fun t1 t2) |]
    ==> P(t)"


(* Values - same scheme again *)

(* All constructors are injective *)

  v_const_inj: "v_const(c1) = v_const(c2) ==> c1 = c2"
  v_clos_inj:
    " v_clos(<|ev1,e1,ve1|>) = v_clos(<|ev2,e2,ve2|>) ==>
     ev1 = ev2 & e1 = e2 & ve1 = ve2"

(* All constructors are distinct *)

  v_disj_const_clos: "~v_const(c) = v_clos(cl)"

(* No induction on values: they are a codatatype! ... *)


(*
  Value environments bind variables to values. Only the following trivial
  properties are needed.
*)

  ve_dom_owr: "ve_dom(ve + {ev |-> v}) = ve_dom(ve) Un {ev}"

  ve_app_owr1: "ve_app (ve + {ev |-> v}) ev=v"
  ve_app_owr2: "~ev1=ev2 ==> ve_app (ve+{ev1 |-> v}) ev2=ve_app ve ev2"


(* Type Environments bind variables to types. The following trivial
properties are needed.  *)

  te_dom_owr: "te_dom(te + {ev |=> t}) = te_dom(te) Un {ev}"

  te_app_owr1: "te_app (te + {ev |=> t}) ev=t"
  te_app_owr2: "~ev1=ev2 ==> te_app (te+{ev1 |=> t}) ev2=te_app te ev2"


(* The dynamic semantics is defined inductively by a set of inference
rules.  These inference rules allows one to draw conclusions of the form ve
|- e ---> v, read the expression e evaluates to the value v in the value
environment ve.  Therefore the relation _ |- _ ---> _ is defined in Isabelle
as the least fixpoint of the functor eval_fun below.  From this definition
introduction rules and a strong elimination (induction) rule can be
derived.
*)

defs
  eval_fun_def:
    " eval_fun(s) ==
     { pp.
       (? ve c. pp=((ve,e_const(c)),v_const(c))) |
       (? ve x. pp=((ve,e_var(x)),ve_app ve x) & x:ve_dom(ve)) |
       (? ve e x. pp=((ve,fn x => e),v_clos(<|x,e,ve|>)))|
       ( ? ve e x f cl.
           pp=((ve,fix f(x) = e),v_clos(cl)) &
           cl=<|x, e, ve+{f |-> v_clos(cl)} |>
       ) |
       ( ? ve e1 e2 c1 c2.
           pp=((ve,e1 @@ e2),v_const(c_app c1 c2)) &
           ((ve,e1),v_const(c1)):s & ((ve,e2),v_const(c2)):s
       ) |
       ( ? ve vem e1 e2 em xm v v2.
           pp=((ve,e1 @@ e2),v) &
           ((ve,e1),v_clos(<|xm,em,vem|>)):s &
           ((ve,e2),v2):s &
           ((vem+{xm |-> v2},em),v):s
       )
     }"

  eval_rel_def: "eval_rel == lfp(eval_fun)"
  eval_def: "ve |- e ---> v == ((ve,e),v):eval_rel"

(* The static semantics is defined in the same way as the dynamic
semantics.  The relation te |- e ===> t express the expression e has the
type t in the type environment te.
*)

  elab_fun_def:
  "elab_fun(s) ==
  { pp.
    (? te c t. pp=((te,e_const(c)),t) & c isof t) |
    (? te x. pp=((te,e_var(x)),te_app te x) & x:te_dom(te)) |
    (? te x e t1 t2. pp=((te,fn x => e),t1->t2) & ((te+{x |=> t1},e),t2):s) |
    (? te f x e t1 t2.
       pp=((te,fix f(x)=e),t1->t2) & ((te+{f |=> t1->t2}+{x |=> t1},e),t2):s
    ) |
    (? te e1 e2 t1 t2.
       pp=((te,e1 @@ e2),t2) & ((te,e1),t1->t2):s & ((te,e2),t1):s
    )
  }"

  elab_rel_def: "elab_rel == lfp(elab_fun)"
  elab_def: "te |- e ===> t == ((te,e),t):elab_rel"

(* The original correspondence relation *)

  isof_env_def:
    " ve isofenv te ==
     ve_dom(ve) = te_dom(te) &
     ( ! x.
         x:ve_dom(ve) -->
         (? c. ve_app ve x = v_const(c) & c isof te_app te x)
     )
   "

axioms
  isof_app: "[| c1 isof t1->t2; c2 isof t1 |] ==> c_app c1 c2 isof t2"

defs
(* The extented correspondence relation *)

  hasty_fun_def:
    " hasty_fun(r) ==
     { p.
       ( ? c t. p = (v_const(c),t) & c isof t) |
       ( ? ev e ve t te.
           p = (v_clos(<|ev,e,ve|>),t) &
           te |- fn ev => e ===> t &
           ve_dom(ve) = te_dom(te) &
           (! ev1. ev1:ve_dom(ve) --> (ve_app ve ev1,te_app te ev1) : r)
       )
     }
   "

  hasty_rel_def: "hasty_rel == gfp(hasty_fun)"
  hasty_def: "v hasty t == (v,t) : hasty_rel"
  hasty_env_def:
    " ve hastyenv te ==
     ve_dom(ve) = te_dom(te) &
     (! x. x: ve_dom(ve) --> ve_app ve x hasty te_app te x)"

ML {* use_legacy_bindings (the_context ()) *}

end