(* Title: Pure/Isar/generic_target.ML
Author: Makarius
Author: Florian Haftmann, TU Muenchen
Common target infrastructure.
*)
signature GENERIC_TARGET =
sig
val define: (((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory) ->
(binding * mixfix) * (Attrib.binding * term) -> local_theory ->
(term * (string * thm)) * local_theory
val notes: (string -> (Attrib.binding * (thm list * Args.src list) list) list ->
(Attrib.binding * (thm list * Args.src list) list) list -> local_theory -> local_theory) ->
string -> (Attrib.binding * (thm list * Args.src list) list) list -> local_theory ->
(string * thm list) list * local_theory
val abbrev: (string * bool -> binding * mixfix -> term * term ->
term list -> local_theory -> local_theory) ->
string * bool -> (binding * mixfix) * term -> local_theory ->
(term * term) * local_theory
val theory_declaration: declaration -> local_theory -> local_theory
val theory_foundation: ((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory
val theory_notes: string -> (Attrib.binding * (thm list * Args.src list) list) list ->
local_theory -> local_theory
val theory_abbrev: Syntax.mode -> (binding * mixfix) * term -> local_theory -> local_theory
end
structure Generic_Target: GENERIC_TARGET =
struct
(** lifting primitive to target operations **)
(* mixfix syntax *)
fun check_mixfix ctxt (b, extra_tfrees) mx =
if null extra_tfrees then mx
else
(Context_Position.if_visible ctxt warning
("Additional type variable(s) in specification of " ^ Binding.print b ^ ": " ^
commas (map (Syntax.string_of_typ ctxt o TFree) (sort_wrt #1 extra_tfrees)) ^
(if mx = NoSyn then ""
else "\nDropping mixfix syntax " ^ Pretty.string_of (Mixfix.pretty_mixfix mx)));
NoSyn);
(* define *)
fun define foundation ((b, mx), ((proto_b_def, atts), rhs)) lthy =
let
val thy = Proof_Context.theory_of lthy;
val thy_ctxt = Proof_Context.init_global thy;
val b_def = Thm.def_binding_optional b proto_b_def;
(*term and type parameters*)
val crhs = Thm.cterm_of thy rhs;
val (defs, rhs') = Local_Defs.export_cterm lthy thy_ctxt crhs ||> Thm.term_of;
val rhs_conv = Raw_Simplifier.rewrite true defs crhs;
val xs = Variable.add_fixed (Local_Theory.target_of lthy) rhs' [];
val T = Term.fastype_of rhs;
val tfreesT = Term.add_tfreesT T (fold (Term.add_tfreesT o #2) xs []);
val extra_tfrees = rev (subtract (op =) tfreesT (Term.add_tfrees rhs []));
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
val type_params = map (Logic.mk_type o TFree) extra_tfrees;
val target_ctxt = Local_Theory.target_of lthy;
val term_params =
filter (Variable.is_fixed target_ctxt o #1) xs
|> sort (Variable.fixed_ord target_ctxt o pairself #1)
|> map Free;
val params = type_params @ term_params;
val U = map Term.fastype_of params ---> T;
(*foundation*)
val ((lhs', global_def), lthy2) = lthy
|> foundation (((b, U), mx'), (b_def, rhs')) (type_params, term_params);
(*local definition*)
val ((lhs, local_def), lthy3) = lthy2
|> Local_Defs.add_def ((b, NoSyn), lhs');
val def = Local_Defs.trans_terms lthy3
[(*c == global.c xs*) local_def,
(*global.c xs == rhs'*) global_def,
(*rhs' == rhs*) Thm.symmetric rhs_conv];
(*note*)
val ([(res_name, [res])], lthy4) = lthy3
|> Local_Theory.notes_kind "" [((b_def, atts), [([def], [])])];
in ((lhs, (res_name, res)), lthy4) end;
(* notes *)
fun import_export_proof ctxt (name, raw_th) =
let
val thy = Proof_Context.theory_of ctxt;
val thy_ctxt = Proof_Context.init_global thy;
val certT = Thm.ctyp_of thy;
val cert = Thm.cterm_of thy;
(*export assumes/defines*)
val th = Goal.norm_result raw_th;
val (defs, th') = Local_Defs.export ctxt thy_ctxt th;
val assms =
map (Raw_Simplifier.rewrite_rule defs o Thm.assume)
(Assumption.all_assms_of ctxt);
val nprems = Thm.nprems_of th' - Thm.nprems_of th;
(*export fixes*)
val tfrees = map TFree (Thm.fold_terms Term.add_tfrees th' []);
val frees = map Free (Thm.fold_terms Term.add_frees th' []);
val (th'' :: vs) =
(th' :: map (Drule.mk_term o cert) (map Logic.mk_type tfrees @ frees))
|> Variable.export ctxt thy_ctxt
|> Drule.zero_var_indexes_list;
(*thm definition*)
val result = Global_Theory.name_thm true true name (Thm.compress th'');
(*import fixes*)
val (tvars, vars) =
chop (length tfrees) (map (Thm.term_of o Drule.dest_term) vs)
|>> map Logic.dest_type;
val instT = map_filter (fn (TVar v, T) => SOME (v, T) | _ => NONE) (tvars ~~ tfrees);
val inst = filter (is_Var o fst) (vars ~~ frees);
val cinstT = map (pairself certT o apfst TVar) instT;
val cinst = map (pairself (cert o Term.map_types (Term_Subst.instantiateT instT))) inst;
val result' = Thm.instantiate (cinstT, cinst) result;
(*import assumes/defines*)
val assm_tac = FIRST' (map (fn assm => Tactic.compose_tac (false, assm, 0)) assms);
val result'' =
(case SINGLE (Seq.INTERVAL assm_tac 1 nprems) result' of
NONE => raise THM ("Failed to re-import result", 0, [result'])
| SOME res => Local_Defs.contract ctxt defs (Thm.cprop_of th) res)
|> Goal.norm_result
|> Global_Theory.name_thm false false name;
in (result'', result) end;
fun notes target_notes kind facts lthy =
let
val thy = Proof_Context.theory_of lthy;
val facts' = facts
|> map (fn (a, bs) => (a, Global_Theory.burrow_fact (Global_Theory.name_multi
(Local_Theory.full_name lthy (fst a))) bs))
|> Global_Theory.map_facts (import_export_proof lthy);
val local_facts = Global_Theory.map_facts #1 facts';
val global_facts = Global_Theory.map_facts #2 facts';
in
lthy
|> target_notes kind global_facts local_facts
|> Proof_Context.note_thmss kind (Attrib.map_facts (map (Attrib.attribute_i thy)) local_facts)
end;
(* abbrev *)
fun abbrev target_abbrev prmode ((b, mx), t) lthy =
let
val thy_ctxt = Proof_Context.init_global (Proof_Context.theory_of lthy);
val target_ctxt = Local_Theory.target_of lthy;
val t' = Assumption.export_term lthy target_ctxt t;
val xs = map Free (rev (Variable.add_fixed target_ctxt t' []));
val u = fold_rev lambda xs t';
val extra_tfrees =
subtract (op =) (Term.add_tfreesT (Term.fastype_of u) []) (Term.add_tfrees u []);
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
val global_rhs =
singleton (Variable.export_terms (Variable.declare_term u target_ctxt) thy_ctxt) u;
in
lthy
|> target_abbrev prmode (b, mx') (global_rhs, t') xs
|> Proof_Context.add_abbrev Print_Mode.internal (b, t) |> snd
|> Local_Defs.fixed_abbrev ((b, NoSyn), t)
end;
(** primitive theory operations **)
fun theory_declaration decl lthy =
let
val global_decl = Morphism.form
(Morphism.transform (Local_Theory.global_morphism lthy) decl);
in
lthy
|> Local_Theory.background_theory (Context.theory_map global_decl)
|> Local_Theory.target (Context.proof_map global_decl)
|> Context.proof_map (Morphism.form decl)
end;
fun theory_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params) lthy =
let
val (const, lthy2) = lthy
|> Local_Theory.background_theory_result (Sign.declare_const lthy ((b, U), mx));
val lhs = list_comb (const, type_params @ term_params);
val ((_, def), lthy3) = lthy2
|> Local_Theory.background_theory_result
(Thm.add_def lthy2 false false (b_def, Logic.mk_equals (lhs, rhs)));
in ((lhs, def), lthy3) end;
fun theory_notes kind global_facts lthy =
let
val thy = Proof_Context.theory_of lthy;
val global_facts' = Attrib.map_facts (map (Attrib.attribute_i thy)) global_facts;
in
lthy
|> Local_Theory.background_theory (Global_Theory.note_thmss kind global_facts' #> snd)
|> Local_Theory.target (Proof_Context.note_thmss kind global_facts' #> snd)
end;
fun theory_abbrev prmode ((b, mx), t) =
Local_Theory.background_theory
(Sign.add_abbrev (#1 prmode) (b, t) #->
(fn (lhs, _) => Sign.notation true prmode [(lhs, mx)]));
end;