(* Title: Sequents/ILL.ML
ID: $Id$
Author: Sara Kalvala and Valeria de Paiva
Copyright 1992 University of Cambridge
*)
val lazy_cs = empty_pack
add_safes [tensl, conjr, disjl, promote0,
context2,context3]
add_unsafes [identity, zerol, conjll, conjlr, disjrl, disjrr,
impr, tensr, impl, derelict, weaken,
promote1, promote2,context1,context4a,context4b];
fun prom_tac n = REPEAT (resolve_tac [promote0,promote1,promote2] n);
fun auto x = prove_goal thy x (fn prems => [best_tac lazy_cs 1]);
val aux_impl = prove_goal thy "$F, $G |- A ==> $F, !(A -o B), $G |- B"
(fn prems => [rtac derelict 1 THEN rtac impl 1 THEN rtac identity 2
THEN rtac context1 1 THEN rtac (hd(prems)) 1]);
val conj_lemma =
prove_goal thy " $F, !A, !B, $G |- C ==> $F, !(A && B), $G |- C"
(fn prems => [rtac contract 1,
res_inst_tac [("A","(!A) >< (!B)")] cut 1,
rtac tensr 2,
rtac (auto "! (A && B) |- !A") 3,
rtac (auto "! (A && B) |- !B") 3,
rtac context1 2,
rtac tensl 2,
rtac (hd(prems)) 2,
rtac context3 1,
rtac context3 1,
rtac context1 1]);
val impr_contract =
prove_goal thy "!A, !A, $G |- B ==> $G |- (!A) -o B"
(fn prems => [rtac impr 1 THEN rtac contract 1
THEN rtac (hd(prems)) 1]);
val impr_contr_der =
prove_goal thy "A, !A, $G |- B ==> $G |- (!A) -o B"
(fn prems => [rtac impr 1 THEN rtac contract 1 THEN rtac derelict 1
THEN rtac (hd(prems)) 1]);
val contrad1 =
prove_goal thy "$F, (!B) -o 0, $G, !B, $H |- A"
(fn _ => [rtac impl 1,rtac identity 3,rtac context3 1,rtac context1 1,
rtac zerol 1]);
val contrad2 =
prove_goal thy "$F, !B, $G, (!B) -o 0, $H |- A"
(fn _ => [rtac impl 1,rtac identity 3,rtac context3 1,rtac context1 1,
rtac zerol 1]);
val ll_mp =
prove_goal thy "A -o B, A |- B"
(fn _ => [rtac impl 1 THEN rtac identity 2 THEN rtac identity 2
THEN rtac context1 1]);
val mp_rule1 =
prove_goal thy "$F, B, $G, $H |- C ==> $F, A, $G, A -o B, $H |- C"
(fn prems => [res_inst_tac [("A","B")] cut 1, rtac ll_mp 2,
rtac (hd(prems)) 2, rtac context3 1, rtac context3 1,
rtac context1 1]);
val mp_rule2 =
prove_goal thy "$F, B, $G, $H |- C ==> $F, A -o B, $G, A, $H |- C"
(fn prems => [res_inst_tac [("A","B")] cut 1, rtac ll_mp 2,
rtac (hd(prems)) 2, rtac context3 1, rtac context3 1,
rtac context1 1]);
val or_to_and =
prove_goal thy "!((!(A ++ B)) -o 0) |- !( ((!A) -o 0) && ((!B) -o 0))"
(fn _ => [best_tac lazy_cs 1]);
val o_a_rule =
prove_goal thy "$F, !( ((!A) -o 0) && ((!B) -o 0)), $G |- C ==> \
\ $F, !((!(A ++ B)) -o 0), $G |- C"
(fn prems => [rtac cut 1, rtac or_to_and 2, rtac (hd(prems)) 2,
rtac context3 1, rtac context1 1]);
val conj_imp =
prove_goal thy "((!A) -o C) ++ ((!B) -o C) |- (!(A && B)) -o C"
(fn _ => [rtac impr 1,rtac conj_lemma 1, rtac disjl 1,
ALLGOALS (rtac mp_rule1 THEN' best_tac lazy_cs)]);
val not_imp = auto "!A, !((!B) -o 0) |- (!((!A) -o B)) -o 0";
val a_not_a =
prove_goal thy "!A -o (!A -o 0) |- !A -o 0"
(fn _ => [rtac impr 1, rtac contract 1, rtac impl 1,
rtac context1 1 THEN rtac identity 2, best_tac lazy_cs 1]);
val a_not_a_rule =
prove_goal thy "$J1, !A -o 0, $J2 |- B ==> $J1, !A -o (!A -o 0), $J2 |- B"
(fn prems => [res_inst_tac [("A","!A -o 0")] cut 1,
rtac a_not_a 2 THEN rtac (hd(prems)) 2
THEN best_tac lazy_cs 1]);
fun thm_to_rule x y =
prove_goal thy x (fn prems => [rtac cut 1, rtac y 2, rtac (hd(prems)) 2,
best_tac lazy_cs 1]);
val safe_cs = lazy_cs add_safes [conj_lemma, ll_mp,contrad1,
contrad2, mp_rule1, mp_rule2, o_a_rule,
a_not_a_rule]
add_unsafes [aux_impl];
val power_cs = safe_cs add_unsafes [impr_contr_der];
fun auto1 x = prove_goal thy x (fn prems => [best_tac safe_cs 1]) ;
fun auto2 x = prove_goal thy x (fn prems => [best_tac power_cs 1]) ;
(* some examples from Troelstra and van Dalen
auto1 "!((!A) -o ((!B) -o 0)) |- (!(A && B)) -o 0";
auto1 "!((!(A && B)) -o 0) |- !((!A) -o ((!B) -o 0))";
auto1 "!( (!((! ((!A) -o B) ) -o 0)) -o 0) |- \
\ (!A) -o ( (! ((!B) -o 0)) -o 0)";
auto2 "!( (!A) -o ( (! ((!B) -o 0)) -o 0) ) |- \
\ (!((! ((!A) -o B) ) -o 0)) -o 0";
*)