base Sublist_Order on Sublist (using a simplified form of embedding as sublist relation)
(* Title: HOL/Library/Product_Lattice.thy
Author: Brian Huffman
*)
header {* Lattice operations on product types *}
theory Product_Lattice
imports "~~/src/HOL/Library/Product_plus"
begin
subsection {* Pointwise ordering *}
instantiation prod :: (ord, ord) ord
begin
definition
"x \<le> y \<longleftrightarrow> fst x \<le> fst y \<and> snd x \<le> snd y"
definition
"(x::'a \<times> 'b) < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
instance ..
end
lemma fst_mono: "x \<le> y \<Longrightarrow> fst x \<le> fst y"
unfolding less_eq_prod_def by simp
lemma snd_mono: "x \<le> y \<Longrightarrow> snd x \<le> snd y"
unfolding less_eq_prod_def by simp
lemma Pair_mono: "x \<le> x' \<Longrightarrow> y \<le> y' \<Longrightarrow> (x, y) \<le> (x', y')"
unfolding less_eq_prod_def by simp
lemma Pair_le [simp]: "(a, b) \<le> (c, d) \<longleftrightarrow> a \<le> c \<and> b \<le> d"
unfolding less_eq_prod_def by simp
instance prod :: (preorder, preorder) preorder
proof
fix x y z :: "'a \<times> 'b"
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
by (rule less_prod_def)
show "x \<le> x"
unfolding less_eq_prod_def
by fast
assume "x \<le> y" and "y \<le> z" thus "x \<le> z"
unfolding less_eq_prod_def
by (fast elim: order_trans)
qed
instance prod :: (order, order) order
by default auto
subsection {* Binary infimum and supremum *}
instantiation prod :: (semilattice_inf, semilattice_inf) semilattice_inf
begin
definition
"inf x y = (inf (fst x) (fst y), inf (snd x) (snd y))"
lemma inf_Pair_Pair [simp]: "inf (a, b) (c, d) = (inf a c, inf b d)"
unfolding inf_prod_def by simp
lemma fst_inf [simp]: "fst (inf x y) = inf (fst x) (fst y)"
unfolding inf_prod_def by simp
lemma snd_inf [simp]: "snd (inf x y) = inf (snd x) (snd y)"
unfolding inf_prod_def by simp
instance
by default auto
end
instantiation prod :: (semilattice_sup, semilattice_sup) semilattice_sup
begin
definition
"sup x y = (sup (fst x) (fst y), sup (snd x) (snd y))"
lemma sup_Pair_Pair [simp]: "sup (a, b) (c, d) = (sup a c, sup b d)"
unfolding sup_prod_def by simp
lemma fst_sup [simp]: "fst (sup x y) = sup (fst x) (fst y)"
unfolding sup_prod_def by simp
lemma snd_sup [simp]: "snd (sup x y) = sup (snd x) (snd y)"
unfolding sup_prod_def by simp
instance
by default auto
end
instance prod :: (lattice, lattice) lattice ..
instance prod :: (distrib_lattice, distrib_lattice) distrib_lattice
by default (auto simp add: sup_inf_distrib1)
subsection {* Top and bottom elements *}
instantiation prod :: (top, top) top
begin
definition
"top = (top, top)"
lemma fst_top [simp]: "fst top = top"
unfolding top_prod_def by simp
lemma snd_top [simp]: "snd top = top"
unfolding top_prod_def by simp
lemma Pair_top_top: "(top, top) = top"
unfolding top_prod_def by simp
instance
by default (auto simp add: top_prod_def)
end
instantiation prod :: (bot, bot) bot
begin
definition
"bot = (bot, bot)"
lemma fst_bot [simp]: "fst bot = bot"
unfolding bot_prod_def by simp
lemma snd_bot [simp]: "snd bot = bot"
unfolding bot_prod_def by simp
lemma Pair_bot_bot: "(bot, bot) = bot"
unfolding bot_prod_def by simp
instance
by default (auto simp add: bot_prod_def)
end
instance prod :: (bounded_lattice, bounded_lattice) bounded_lattice ..
instance prod :: (boolean_algebra, boolean_algebra) boolean_algebra
by default (auto simp add: prod_eqI inf_compl_bot sup_compl_top diff_eq)
subsection {* Complete lattice operations *}
instantiation prod :: (complete_lattice, complete_lattice) complete_lattice
begin
definition
"Sup A = (SUP x:A. fst x, SUP x:A. snd x)"
definition
"Inf A = (INF x:A. fst x, INF x:A. snd x)"
instance
by default (simp_all add: less_eq_prod_def Inf_prod_def Sup_prod_def
INF_lower SUP_upper le_INF_iff SUP_le_iff)
end
lemma fst_Sup: "fst (Sup A) = (SUP x:A. fst x)"
unfolding Sup_prod_def by simp
lemma snd_Sup: "snd (Sup A) = (SUP x:A. snd x)"
unfolding Sup_prod_def by simp
lemma fst_Inf: "fst (Inf A) = (INF x:A. fst x)"
unfolding Inf_prod_def by simp
lemma snd_Inf: "snd (Inf A) = (INF x:A. snd x)"
unfolding Inf_prod_def by simp
lemma fst_SUP: "fst (SUP x:A. f x) = (SUP x:A. fst (f x))"
by (simp add: SUP_def fst_Sup image_image)
lemma snd_SUP: "snd (SUP x:A. f x) = (SUP x:A. snd (f x))"
by (simp add: SUP_def snd_Sup image_image)
lemma fst_INF: "fst (INF x:A. f x) = (INF x:A. fst (f x))"
by (simp add: INF_def fst_Inf image_image)
lemma snd_INF: "snd (INF x:A. f x) = (INF x:A. snd (f x))"
by (simp add: INF_def snd_Inf image_image)
lemma SUP_Pair: "(SUP x:A. (f x, g x)) = (SUP x:A. f x, SUP x:A. g x)"
by (simp add: SUP_def Sup_prod_def image_image)
lemma INF_Pair: "(INF x:A. (f x, g x)) = (INF x:A. f x, INF x:A. g x)"
by (simp add: INF_def Inf_prod_def image_image)
end