(* Title: HOL/Record.thy
Author: Wolfgang Naraschewski, TU Muenchen
Author: Markus Wenzel, TU Muenchen
Author: Norbert Schirmer, TU Muenchen
Author: Thomas Sewell, NICTA
*)
header {* Extensible records with structural subtyping *}
theory Record
imports Product_Type
uses ("Tools/record.ML")
begin
lemma prop_subst: "s = t \<Longrightarrow> PROP P t \<Longrightarrow> PROP P s"
by simp
lemma K_record_comp: "(\<lambda>x. c) \<circ> f = (\<lambda>x. c)"
by (simp add: comp_def)
lemma o_eq_dest_lhs:
"a o b = c \<Longrightarrow> a (b v) = c v"
by clarsimp
lemma id_o_refl:
"id o f = f o id"
by simp
lemma o_eq_id_dest:
"a o b = id o c \<Longrightarrow> a (b v) = c v"
by clarsimp
subsection {* Concrete record syntax *}
nonterminals
ident field_type field_types field fields update updates
syntax
"_constify" :: "id => ident" ("_")
"_constify" :: "longid => ident" ("_")
"_field_type" :: "[ident, type] => field_type" ("(2_ ::/ _)")
"" :: "field_type => field_types" ("_")
"_field_types" :: "[field_type, field_types] => field_types" ("_,/ _")
"_record_type" :: "field_types => type" ("(3'(| _ |'))")
"_record_type_scheme" :: "[field_types, type] => type" ("(3'(| _,/ (2... ::/ _) |'))")
"_field" :: "[ident, 'a] => field" ("(2_ =/ _)")
"" :: "field => fields" ("_")
"_fields" :: "[field, fields] => fields" ("_,/ _")
"_record" :: "fields => 'a" ("(3'(| _ |'))")
"_record_scheme" :: "[fields, 'a] => 'a" ("(3'(| _,/ (2... =/ _) |'))")
"_update_name" :: idt
"_update" :: "[ident, 'a] => update" ("(2_ :=/ _)")
"" :: "update => updates" ("_")
"_updates" :: "[update, updates] => updates" ("_,/ _")
"_record_update" :: "['a, updates] => 'b" ("_/(3'(| _ |'))" [900,0] 900)
syntax (xsymbols)
"_record_type" :: "field_types => type" ("(3\<lparr>_\<rparr>)")
"_record_type_scheme" :: "[field_types, type] => type" ("(3\<lparr>_,/ (2\<dots> ::/ _)\<rparr>)")
"_record" :: "fields => 'a" ("(3\<lparr>_\<rparr>)")
"_record_scheme" :: "[fields, 'a] => 'a" ("(3\<lparr>_,/ (2\<dots> =/ _)\<rparr>)")
"_record_update" :: "['a, updates] => 'b" ("_/(3\<lparr>_\<rparr>)" [900,0] 900)
subsection {* Operators and lemmas for types isomorphic to tuples *}
text {*
Records are isomorphic to compound tuple types. To implement efficient
records, we make this isomorphism explicit. Consider the record
access/update simplification @{text "alpha (beta_update f rec) = alpha rec"} for
distinct fields alpha and beta of some record rec with n fields. There
are @{text "n ^ 2"} such theorems, which prohibits storage of all of them for
large n. The rules can be proved on the fly by case decomposition and
simplification in O(n) time. By creating O(n) isomorphic-tuple types
while defining the record, however, we can prove the access/update
simplification in @{text "O(log(n)^2)"} time.
The O(n) cost of case decomposition is not because O(n) steps are taken,
but rather because the resulting rule must contain O(n) new variables and
an O(n) size concrete record construction. To sidestep this cost, we would
like to avoid case decomposition in proving access/update theorems.
Record types are defined as isomorphic to tuple types. For instance, a
record type with fields 'a, 'b, 'c and 'd might be introduced as
isomorphic to @{text "'a \<times> ('b \<times> ('c \<times> 'd))"}. If we balance the tuple tree to
@{text "('a \<times> 'b) \<times> ('c \<times> 'd)"} then accessors can be defined by converting to
the underlying type then using O(log(n)) fst or snd operations.
Updators can be defined similarly, if we introduce a @{text "fst_update"} and
@{text "snd_update"} function. Furthermore, we can prove the access/update
theorem in O(log(n)) steps by using simple rewrites on fst, snd,
@{text "fst_update"} and @{text "snd_update"}.
The catch is that, although O(log(n)) steps were taken, the underlying
type we converted to is a tuple tree of size O(n). Processing this term
type wastes performance. We avoid this for large n by taking each
subtree of size K and defining a new type isomorphic to that tuple
subtree. A record can now be defined as isomorphic to a tuple tree
of these O(n/K) new types, or, if @{text "n > K*K"}, we can repeat the process,
until the record can be defined in terms of a tuple tree of complexity
less than the constant K.
If we prove the access/update theorem on this type with the analagous
steps to the tuple tree, we consume @{text "O(log(n)^2)"} time as the intermediate
terms are O(log(n)) in size and the types needed have size bounded by K.
To enable this analagous traversal, we define the functions seen below:
@{text "istuple_fst"}, @{text "istuple_snd"}, @{text "istuple_fst_update"}
and @{text "istuple_snd_update"}. These functions generalise tuple
operations by taking a parameter that encapsulates a tuple isomorphism.
The rewrites needed on these functions now need an additional assumption
which is that the isomorphism works.
These rewrites are typically used in a structured way. They are here
presented as the introduction rule @{text "isomorphic_tuple.intros"} rather than
as a rewrite rule set. The introduction form is an optimisation, as net
matching can be performed at one term location for each step rather than
the simplifier searching the term for possible pattern matches. The rule
set is used as it is viewed outside the locale, with the locale assumption
(that the isomorphism is valid) left as a rule assumption. All rules are
structured to aid net matching, using either a point-free form or an
encapsulating predicate.
*}
typedef ('a, 'b, 'c) tuple_isomorphism
= "UNIV :: (('a \<Rightarrow> ('b \<times> 'c)) \<times> (('b \<times> 'c) \<Rightarrow> 'a)) set"
by simp
definition
"TupleIsomorphism repr abst = Abs_tuple_isomorphism (repr, abst)"
definition
istuple_fst :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'b"
where
"istuple_fst isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in fst \<circ> repr"
definition
istuple_snd :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'a \<Rightarrow> 'c"
where
"istuple_snd isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in snd \<circ> repr"
definition
istuple_fst_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)"
where
"istuple_fst_update isom \<equiv>
let (repr, abst) = Rep_tuple_isomorphism isom in
(\<lambda>f v. abst (f (fst (repr v)), snd (repr v)))"
definition
istuple_snd_update :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> ('c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'a)"
where
"istuple_snd_update isom \<equiv>
let (repr, abst) = Rep_tuple_isomorphism isom in
(\<lambda>f v. abst (fst (repr v), f (snd (repr v))))"
definition
istuple_cons :: "('a, 'b, 'c) tuple_isomorphism \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'a"
where
"istuple_cons isom \<equiv> let (repr, abst) = Rep_tuple_isomorphism isom in curry abst"
text {*
These predicates are used in the introduction rule set to constrain
matching appropriately. The elimination rules for them produce the
desired theorems once they are proven. The final introduction rules are
used when no further rules from the introduction rule set can apply.
*}
definition
istuple_surjective_proof_assist :: "'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
where
"istuple_surjective_proof_assist x y f \<equiv> (f x = y)"
definition
istuple_update_accessor_cong_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a))
\<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
where
"istuple_update_accessor_cong_assist upd acc
\<equiv> (\<forall>f v. upd (\<lambda>x. f (acc v)) v = upd f v)
\<and> (\<forall>v. upd id v = v)"
definition
istuple_update_accessor_eq_assist :: "(('b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'a)) \<Rightarrow> ('a \<Rightarrow> 'b)
\<Rightarrow> 'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
where
"istuple_update_accessor_eq_assist upd acc v f v' x
\<equiv> upd f v = v' \<and> acc v = x
\<and> istuple_update_accessor_cong_assist upd acc"
lemma update_accessor_congruence_foldE:
assumes uac: "istuple_update_accessor_cong_assist upd acc"
and r: "r = r'" and v: "acc r' = v'"
and f: "\<And>v. v' = v \<Longrightarrow> f v = f' v"
shows "upd f r = upd f' r'"
using uac r v[symmetric]
apply (subgoal_tac "upd (\<lambda>x. f (acc r')) r' = upd (\<lambda>x. f' (acc r')) r'")
apply (simp add: istuple_update_accessor_cong_assist_def)
apply (simp add: f)
done
lemma update_accessor_congruence_unfoldE:
"\<lbrakk> istuple_update_accessor_cong_assist upd acc;
r = r'; acc r' = v'; \<And>v. v = v' \<Longrightarrow> f v = f' v \<rbrakk>
\<Longrightarrow> upd f r = upd f' r'"
apply (erule(2) update_accessor_congruence_foldE)
apply simp
done
lemma istuple_update_accessor_cong_assist_id:
"istuple_update_accessor_cong_assist upd acc \<Longrightarrow> upd id = id"
by (rule ext, simp add: istuple_update_accessor_cong_assist_def)
lemma update_accessor_noopE:
assumes uac: "istuple_update_accessor_cong_assist upd acc"
and acc: "f (acc x) = acc x"
shows "upd f x = x"
using uac
by (simp add: acc istuple_update_accessor_cong_assist_id[OF uac, unfolded id_def]
cong: update_accessor_congruence_unfoldE[OF uac])
lemma update_accessor_noop_compE:
assumes uac: "istuple_update_accessor_cong_assist upd acc"
assumes acc: "f (acc x) = acc x"
shows "upd (g \<circ> f) x = upd g x"
by (simp add: acc cong: update_accessor_congruence_unfoldE[OF uac])
lemma update_accessor_cong_assist_idI:
"istuple_update_accessor_cong_assist id id"
by (simp add: istuple_update_accessor_cong_assist_def)
lemma update_accessor_cong_assist_triv:
"istuple_update_accessor_cong_assist upd acc
\<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
by assumption
lemma update_accessor_accessor_eqE:
"\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> acc v = x"
by (simp add: istuple_update_accessor_eq_assist_def)
lemma update_accessor_updator_eqE:
"\<lbrakk> istuple_update_accessor_eq_assist upd acc v f v' x \<rbrakk> \<Longrightarrow> upd f v = v'"
by (simp add: istuple_update_accessor_eq_assist_def)
lemma istuple_update_accessor_eq_assist_idI:
"v' = f v \<Longrightarrow> istuple_update_accessor_eq_assist id id v f v' v"
by (simp add: istuple_update_accessor_eq_assist_def
update_accessor_cong_assist_idI)
lemma istuple_update_accessor_eq_assist_triv:
"istuple_update_accessor_eq_assist upd acc v f v' x
\<Longrightarrow> istuple_update_accessor_eq_assist upd acc v f v' x"
by assumption
lemma istuple_update_accessor_cong_from_eq:
"istuple_update_accessor_eq_assist upd acc v f v' x
\<Longrightarrow> istuple_update_accessor_cong_assist upd acc"
by (simp add: istuple_update_accessor_eq_assist_def)
lemma o_eq_dest:
"a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
apply (clarsimp simp: o_def)
apply (erule fun_cong)
done
lemma o_eq_elim:
"\<lbrakk> a o b = c o d; \<lbrakk> \<And>v. a (b v) = c (d v) \<rbrakk> \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
apply (erule meta_mp)
apply (erule o_eq_dest)
done
lemma istuple_surjective_proof_assistI:
"f x = y \<Longrightarrow>
istuple_surjective_proof_assist x y f"
by (simp add: istuple_surjective_proof_assist_def)
lemma istuple_surjective_proof_assist_idE:
"istuple_surjective_proof_assist x y id \<Longrightarrow> x = y"
by (simp add: istuple_surjective_proof_assist_def)
locale isomorphic_tuple =
fixes isom :: "('a, 'b, 'c) tuple_isomorphism"
and repr and abst
defines "repr \<equiv> fst (Rep_tuple_isomorphism isom)"
defines "abst \<equiv> snd (Rep_tuple_isomorphism isom)"
assumes repr_inv: "\<And>x. abst (repr x) = x"
assumes abst_inv: "\<And>y. repr (abst y) = y"
begin
lemma repr_inj:
"(repr x = repr y) = (x = y)"
apply (rule iffI, simp_all)
apply (drule_tac f=abst in arg_cong, simp add: repr_inv)
done
lemma abst_inj:
"(abst x = abst y) = (x = y)"
apply (rule iffI, simp_all)
apply (drule_tac f=repr in arg_cong, simp add: abst_inv)
done
lemma split_Rep:
"split f (Rep_tuple_isomorphism isom)
= f repr abst"
by (simp add: split_def repr_def abst_def)
lemmas simps = Let_def split_Rep repr_inv abst_inv repr_inj abst_inj
lemma istuple_access_update_fst_fst:
"\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
(f o istuple_fst isom) o (istuple_fst_update isom o h) g
= j o (f o istuple_fst isom)"
by (clarsimp simp: istuple_fst_update_def istuple_fst_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_access_update_snd_snd:
"\<lbrakk> f o h g = j o f \<rbrakk> \<Longrightarrow>
(f o istuple_snd isom) o (istuple_snd_update isom o h) g
= j o (f o istuple_snd isom)"
by (clarsimp simp: istuple_snd_update_def istuple_snd_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_access_update_fst_snd:
"(f o istuple_fst isom) o (istuple_snd_update isom o h) g
= id o (f o istuple_fst isom)"
by (clarsimp simp: istuple_snd_update_def istuple_fst_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_access_update_snd_fst:
"(f o istuple_snd isom) o (istuple_fst_update isom o h) g
= id o (f o istuple_snd isom)"
by (clarsimp simp: istuple_fst_update_def istuple_snd_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_update_swap_fst_fst:
"\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
(istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
= (istuple_fst_update isom o j) g o (istuple_fst_update isom o h) f"
by (clarsimp simp: istuple_fst_update_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_update_swap_snd_snd:
"\<lbrakk> h f o j g = j g o h f \<rbrakk> \<Longrightarrow>
(istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
= (istuple_snd_update isom o j) g o (istuple_snd_update isom o h) f"
by (clarsimp simp: istuple_snd_update_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_update_swap_fst_snd:
"(istuple_snd_update isom o h) f o (istuple_fst_update isom o j) g
= (istuple_fst_update isom o j) g o (istuple_snd_update isom o h) f"
by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_update_swap_snd_fst:
"(istuple_fst_update isom o h) f o (istuple_snd_update isom o j) g
= (istuple_snd_update isom o j) g o (istuple_fst_update isom o h) f"
by (clarsimp simp: istuple_fst_update_def istuple_snd_update_def simps
intro!: ext elim!: o_eq_elim)
lemma istuple_update_compose_fst_fst:
"\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
(istuple_fst_update isom o h) f o (istuple_fst_update isom o j) g
= (istuple_fst_update isom o k) (f o g)"
by (fastsimp simp: istuple_fst_update_def simps
intro!: ext elim!: o_eq_elim dest: fun_cong)
lemma istuple_update_compose_snd_snd:
"\<lbrakk> h f o j g = k (f o g) \<rbrakk> \<Longrightarrow>
(istuple_snd_update isom o h) f o (istuple_snd_update isom o j) g
= (istuple_snd_update isom o k) (f o g)"
by (fastsimp simp: istuple_snd_update_def simps
intro!: ext elim!: o_eq_elim dest: fun_cong)
lemma istuple_surjective_proof_assist_step:
"\<lbrakk> istuple_surjective_proof_assist v a (istuple_fst isom o f);
istuple_surjective_proof_assist v b (istuple_snd isom o f) \<rbrakk>
\<Longrightarrow> istuple_surjective_proof_assist v (istuple_cons isom a b) f"
by (clarsimp simp: istuple_surjective_proof_assist_def simps
istuple_fst_def istuple_snd_def istuple_cons_def)
lemma istuple_fst_update_accessor_cong_assist:
"istuple_update_accessor_cong_assist f g \<Longrightarrow>
istuple_update_accessor_cong_assist (istuple_fst_update isom o f) (g o istuple_fst isom)"
by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
istuple_fst_update_def istuple_fst_def)
lemma istuple_snd_update_accessor_cong_assist:
"istuple_update_accessor_cong_assist f g \<Longrightarrow>
istuple_update_accessor_cong_assist (istuple_snd_update isom o f) (g o istuple_snd isom)"
by (clarsimp simp: istuple_update_accessor_cong_assist_def simps
istuple_snd_update_def istuple_snd_def)
lemma istuple_fst_update_accessor_eq_assist:
"istuple_update_accessor_eq_assist f g a u a' v \<Longrightarrow>
istuple_update_accessor_eq_assist (istuple_fst_update isom o f) (g o istuple_fst isom)
(istuple_cons isom a b) u (istuple_cons isom a' b) v"
by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_fst_update_def istuple_fst_def
istuple_update_accessor_cong_assist_def istuple_cons_def simps)
lemma istuple_snd_update_accessor_eq_assist:
"istuple_update_accessor_eq_assist f g b u b' v \<Longrightarrow>
istuple_update_accessor_eq_assist (istuple_snd_update isom o f) (g o istuple_snd isom)
(istuple_cons isom a b) u (istuple_cons isom a b') v"
by (clarsimp simp: istuple_update_accessor_eq_assist_def istuple_snd_update_def istuple_snd_def
istuple_update_accessor_cong_assist_def istuple_cons_def simps)
lemma istuple_cons_conj_eqI:
"\<lbrakk> (a = c \<and> b = d \<and> P) = Q \<rbrakk> \<Longrightarrow>
(istuple_cons isom a b = istuple_cons isom c d \<and> P) = Q"
by (clarsimp simp: istuple_cons_def simps)
lemmas intros =
istuple_access_update_fst_fst
istuple_access_update_snd_snd
istuple_access_update_fst_snd
istuple_access_update_snd_fst
istuple_update_swap_fst_fst
istuple_update_swap_snd_snd
istuple_update_swap_fst_snd
istuple_update_swap_snd_fst
istuple_update_compose_fst_fst
istuple_update_compose_snd_snd
istuple_surjective_proof_assist_step
istuple_fst_update_accessor_eq_assist
istuple_snd_update_accessor_eq_assist
istuple_fst_update_accessor_cong_assist
istuple_snd_update_accessor_cong_assist
istuple_cons_conj_eqI
end
lemma isomorphic_tuple_intro:
assumes repr_inj: "\<And>x y. (repr x = repr y) = (x = y)"
and abst_inv: "\<And>z. repr (abst z) = z"
shows "v \<equiv> TupleIsomorphism repr abst \<Longrightarrow> isomorphic_tuple v"
apply (rule isomorphic_tuple.intro,
simp_all add: TupleIsomorphism_def Abs_tuple_isomorphism_inverse
tuple_isomorphism_def abst_inv)
apply (cut_tac x="abst (repr x)" and y="x" in repr_inj)
apply (simp add: abst_inv)
done
definition
"tuple_istuple \<equiv> TupleIsomorphism id id"
lemma tuple_istuple:
"isomorphic_tuple tuple_istuple"
by (simp add: isomorphic_tuple_intro[OF _ _ reflexive] tuple_istuple_def)
lemma refl_conj_eq:
"Q = R \<Longrightarrow> (P \<and> Q) = (P \<and> R)"
by simp
lemma istuple_UNIV_I: "\<And>x. x\<in>UNIV \<equiv> True"
by simp
lemma istuple_True_simp: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
by simp
use "Tools/record.ML"
setup Record.setup
end