(* Title: HOLCF/Sprod1.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for theory Sprod1.thy
*)
open Sprod1;
(* ------------------------------------------------------------------------ *)
(* less_sprod is a partial order on Sprod *)
(* ------------------------------------------------------------------------ *)
qed_goalw "refl_less_sprod" thy [less_sprod_def]"(p::'a ** 'b) << p"
(fn prems => [(fast_tac (HOL_cs addIs [refl_less]) 1)]);
qed_goalw "antisym_less_sprod" thy [less_sprod_def]
"[|(p1::'a ** 'b) << p2;p2 << p1|] ==> p1=p2"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac Sel_injective_Sprod 1),
(fast_tac (HOL_cs addIs [antisym_less]) 1),
(fast_tac (HOL_cs addIs [antisym_less]) 1)
]);
qed_goalw "trans_less_sprod" thy [less_sprod_def]
"[|(p1::'a**'b) << p2;p2 << p3|] ==> p1 << p3"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac conjI 1),
(fast_tac (HOL_cs addIs [trans_less]) 1),
(fast_tac (HOL_cs addIs [trans_less]) 1)
]);