(* Title: ZF/ex/data.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Sample datatype definition.
It has four contructors, of arities 0-3, and two parameters A and B.
*)
structure Data = Datatype_Fun
(val thy = Univ.thy
val rec_specs = [("data", "univ(A Un B)",
[(["Con0"], "i"),
(["Con1"], "i=>i"),
(["Con2"], "[i,i]=>i"),
(["Con3"], "[i,i,i]=>i")])]
val rec_styp = "[i,i]=>i"
val ext = None
val sintrs =
["Con0 : data(A,B)",
"[| a: A |] ==> Con1(a) : data(A,B)",
"[| a: A; b: B |] ==> Con2(a,b) : data(A,B)",
"[| a: A; b: B; d: data(A,B) |] ==> Con3(a,b,d) : data(A,B)"]
val monos = []
val type_intrs = datatype_intrs
val type_elims = datatype_elims);
(** Lemmas to justify using "data" in other recursive type definitions **)
goalw Data.thy Data.defs "!!A B. [| A<=C; B<=D |] ==> data(A,B) <= data(C,D)";
by (rtac lfp_mono 1);
by (REPEAT (rtac Data.bnd_mono 1));
by (REPEAT (ares_tac (univ_mono::Un_mono::basic_monos) 1));
val data_mono = result();
goalw Data.thy (Data.defs@Data.con_defs) "data(univ(A),univ(A)) <= univ(A)";
by (rtac lfp_lowerbound 1);
by (rtac ([A_subset_univ, Un_upper1] MRS subset_trans RS univ_mono) 2);
by (fast_tac (ZF_cs addSIs [zero_in_univ, Inl_in_univ, Inr_in_univ,
Pair_in_univ]) 1);
val data_univ = result();
val data_subset_univ = standard ([data_mono, data_univ] MRS subset_trans);