(* Title: HOL/ex/Lagrange.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
*)
header {* A lemma for Lagrange's theorem *}
theory Lagrange imports Main begin
text {* This theory only contains a single theorem, which is a lemma
in Lagrange's proof that every natural number is the sum of 4 squares.
Its sole purpose is to demonstrate ordered rewriting for commutative
rings.
The enterprising reader might consider proving all of Lagrange's
theorem. *}
constdefs sq :: "'a::times => 'a"
"sq x == x*x"
text {* The following lemma essentially shows that every natural
number is the sum of four squares, provided all prime numbers are.
However, this is an abstract theorem about commutative rings. It has,
a priori, nothing to do with nat. *}
ML"Delsimprocs[ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]"
-- {* once a slow step, but now (2001) just three seconds! *}
lemma Lagrange_lemma:
"!!x1::'a::comm_ring.
(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
sq(x1*y1 - x2*y2 - x3*y3 - x4*y4) +
sq(x1*y2 + x2*y1 + x3*y4 - x4*y3) +
sq(x1*y3 - x2*y4 + x3*y1 + x4*y2) +
sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)"
by(simp add: sq_def ring_eq_simps)
text{*A challenge by John Harrison. Takes about 74s on a 2.5GHz Apple G5.*}
lemma "!!p1::'a::comm_ring.
(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
(sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
= sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
oops
(*
by(simp add: sq_def ring_eq_simps)
*)
end