(*
ID: $Id$
Author: Amine Chaieb, TU Muenchen
*)
header {* Dense linear order without endpoints
and a quantifier elimination procedure in Ferrante and Rackoff style *}
theory Dense_Linear_Order
imports Finite_Set
uses
"Tools/Qelim/qelim.ML"
"Tools/Qelim/langford_data.ML"
"Tools/Qelim/ferrante_rackoff_data.ML"
("Tools/Qelim/langford.ML")
("Tools/Qelim/ferrante_rackoff.ML")
begin
setup Langford_Data.setup
setup Ferrante_Rackoff_Data.setup
section {* The classical QE after Langford for dense linear orders *}
locale dense_linear_order = Linorder +
assumes gt_ex: "\<forall>x. \<exists>y. x \<sqsubset> y"
and lt_ex: "\<forall>x. \<exists>y. y \<sqsubset> x"
and dense: "\<forall>x y. x \<sqsubset> y \<longrightarrow> (\<exists>z. x \<sqsubset> z \<and> z \<sqsubset> y)"
begin
lemma dlo_qe_bnds:
assumes ne: "L \<noteq> {}" and neU: "U \<noteq> {}" and fL: "finite L" and fU: "finite U"
shows "(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y)) \<equiv> (\<forall> l \<in> L. \<forall>u \<in> U. l \<sqsubset> u)"
proof (simp only: atomize_eq, rule iffI)
assume H: "\<exists>x. (\<forall>y\<in>L. y \<^loc>< x) \<and> (\<forall>y\<in>U. x \<^loc>< y)"
then obtain x where xL: "\<forall>y\<in>L. y \<^loc>< x" and xU: "\<forall>y\<in>U. x \<^loc>< y" by blast
{fix l u assume l: "l \<in> L" and u: "u \<in> U"
from less_trans[OF xL[rule_format, OF l] xU[rule_format, OF u]]
have "l \<sqsubset> u" .}
thus "\<forall>l\<in>L. \<forall>u\<in>U. l \<^loc>< u" by blast
next
assume H: "\<forall>l\<in>L. \<forall>u\<in>U. l \<^loc>< u"
let ?ML = "Max L"
let ?MU = "Min U"
from fL ne have th1: "?ML \<in> L" and th1': "\<forall>l\<in>L. l \<sqsubseteq> ?ML" by auto
from fU neU have th2: "?MU \<in> U" and th2': "\<forall>u\<in>U. ?MU \<sqsubseteq> u" by auto
from th1 th2 H have "?ML \<sqsubset> ?MU" by auto
with dense obtain w where th3: "?ML \<sqsubset> w" and th4: "w \<sqsubset> ?MU" by blast
from th3 th1' have "\<forall>l \<in> L. l \<sqsubset> w"
apply auto
apply (erule_tac x="l" in ballE)
by (auto intro: le_less_trans)
moreover from th4 th2' have "\<forall>u \<in> U. w \<sqsubset> u"
apply auto
apply (erule_tac x="u" in ballE)
by (auto intro: less_le_trans)
ultimately show "\<exists>x. (\<forall>y\<in>L. y \<^loc>< x) \<and> (\<forall>y\<in>U. x \<^loc>< y)" by auto
qed
lemma dlo_qe_noub:
assumes ne: "L \<noteq> {}" and fL: "finite L"
shows "(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> {}. x \<sqsubset> y)) \<equiv> True"
proof(simp add: atomize_eq)
from gt_ex[rule_format, of "Max L"] obtain M where M: "Max L \<sqsubset> M" by blast
from ne fL have "\<forall>x \<in> L. x \<sqsubseteq> Max L" by simp
with M have "\<forall>x\<in>L. x \<sqsubset> M" by (auto intro: le_less_trans)
thus "\<exists>x. \<forall>y\<in>L. y \<^loc>< x" by blast
qed
lemma dlo_qe_nolb:
assumes ne: "U \<noteq> {}" and fU: "finite U"
shows "(\<exists>x. (\<forall>y \<in> {}. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y)) \<equiv> True"
proof(simp add: atomize_eq)
from lt_ex[rule_format, of "Min U"] obtain M where M: "M \<sqsubset> Min U" by blast
from ne fU have "\<forall>x \<in> U. Min U \<sqsubseteq> x" by simp
with M have "\<forall>x\<in>U. M \<sqsubset> x" by (auto intro: less_le_trans)
thus "\<exists>x. \<forall>y\<in>U. x \<^loc>< y" by blast
qed
lemma gather_simps:
shows
"(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y) \<and> x \<sqsubset> u \<and> P x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> (insert u U). x \<sqsubset> y) \<and> P x)"
and "(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y) \<and> l \<sqsubset> x \<and> P x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> (insert l L). y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y) \<and> P x)"
"(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y) \<and> x \<sqsubset> u) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> (insert u U). x \<sqsubset> y))"
and "(\<exists>x. (\<forall>y \<in> L. y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y) \<and> l \<sqsubset> x) \<longleftrightarrow> (\<exists>x. (\<forall>y \<in> (insert l L). y \<sqsubset> x) \<and> (\<forall>y \<in> U. x \<sqsubset> y))" by auto
lemma
gather_start: "(\<exists>x. P x) \<equiv> (\<exists>x. (\<forall>y \<in> {}. y \<^loc>< x) \<and> (\<forall>y\<in> {}. x \<sqsubset> y) \<and> P x)"
by simp
lemma exists_neq: "\<exists>(x::'a). x \<noteq> t" "\<exists>(x::'a). t \<noteq> x"
using gt_ex[rule_format, of t] by auto
lemma less_not_permute: "\<not> (x \<sqsubset> y \<and> y \<sqsubset> x)" by (simp add: not_less linear)
lemmas dlo_simps = order_refl less_irrefl not_less not_le exists_neq
le_less neq_iff linear less_not_permute
lemma axiom: "dense_linear_order (op \<sqsubseteq>) (op \<sqsubset>)" .
lemma atoms: includes meta_term_syntax
shows "TERM (op \<sqsubset> :: 'a \<Rightarrow> _)" and "TERM (op \<sqsubseteq>)" and "TERM (op = :: 'a \<Rightarrow> _)" .
declare axiom[langford qe: dlo_qe_bnds dlo_qe_nolb dlo_qe_noub gather: gather_start gather_simps atoms: atoms]
declare dlo_simps[langfordsimp]
end
(* FIXME: Move to HOL -- together with the conj_aci_rule in langford.ML *)
lemma dnf:
"(P & (Q | R)) = ((P&Q) | (P&R))"
"((Q | R) & P) = ((Q&P) | (R&P))"
by blast+
lemmas weak_dnf_simps = simp_thms dnf
lemma nnf_simps:
"(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
"(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P"
by blast+
lemma ex_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x. P x) \<or> (\<exists>x. Q x))" by blast
lemmas dnf_simps = weak_dnf_simps nnf_simps ex_distrib
use "Tools/Qelim/langford.ML"
method_setup dlo = {*
Method.ctxt_args (Method.SIMPLE_METHOD' o LangfordQE.dlo_tac)
*} "Langford's algorithm for quantifier elimination in dense linear orders"
interpretation dlo_ordring_class: dense_linear_order["op \<le> :: 'a::{ordered_field} \<Rightarrow> _" "op <"]
apply unfold_locales
apply auto
apply (rule_tac x = "x + 1" in exI, simp)
apply (rule_tac x = "x - 1" in exI, simp)
apply (rule_tac x = "(x + y) / (1 + 1)" in exI)
apply (rule conjI)
apply (rule less_half_sum, simp)
apply (rule gt_half_sum, simp)
done
lemma (in dense_linear_order) "\<forall>a b. (\<exists>x. a \<sqsubset> x \<and> x\<sqsubset> b) \<longleftrightarrow> (a \<sqsubset> b)"
by dlo
lemma "\<forall>(a::'a::ordered_field) b. (\<exists>x. a < x \<and> x< b) \<longleftrightarrow> (a < b)"
by dlo
section {* Contructive dense linear orders yield QE for linear arithmetic over ordered Fields -- see Arith_Tools.thy *}
context Linorder
begin
text{* Theorems for @{text "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>-\<infinity>\<^esub>)"}*}
lemma minf_lt: "\<exists>z . \<forall>x. x \<sqsubset> z \<longrightarrow> (x \<sqsubset> t \<longleftrightarrow> True)" by auto
lemma minf_gt: "\<exists>z . \<forall>x. x \<sqsubset> z \<longrightarrow> (t \<sqsubset> x \<longleftrightarrow> False)"
by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
lemma minf_le: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (x \<sqsubseteq> t \<longleftrightarrow> True)" by (auto simp add: less_le)
lemma minf_ge: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (t \<sqsubseteq> x \<longleftrightarrow> False)"
by (auto simp add: less_le not_less not_le)
lemma minf_eq: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (x = t \<longleftrightarrow> False)" by auto
lemma minf_neq: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (x \<noteq> t \<longleftrightarrow> True)" by auto
lemma minf_P: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P \<longleftrightarrow> P)" by blast
text{* Theorems for @{text "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>+\<infinity>\<^esub>)"}*}
lemma pinf_gt: "\<exists>z . \<forall>x. z \<sqsubset> x \<longrightarrow> (t \<sqsubset> x \<longleftrightarrow> True)" by auto
lemma pinf_lt: "\<exists>z . \<forall>x. z \<sqsubset> x \<longrightarrow> (x \<sqsubset> t \<longleftrightarrow> False)"
by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le)
lemma pinf_ge: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (t \<sqsubseteq> x \<longleftrightarrow> True)" by (auto simp add: less_le)
lemma pinf_le: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (x \<sqsubseteq> t \<longleftrightarrow> False)"
by (auto simp add: less_le not_less not_le)
lemma pinf_eq: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (x = t \<longleftrightarrow> False)" by auto
lemma pinf_neq: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (x \<noteq> t \<longleftrightarrow> True)" by auto
lemma pinf_P: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P \<longleftrightarrow> P)" by blast
lemma nmi_lt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x \<sqsubset> t \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_gt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> t \<sqsubset> x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)"
by (auto simp add: le_less)
lemma nmi_le: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x\<sqsubseteq> t \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_ge: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> t\<sqsubseteq> x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_eq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> x = t \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_neq: "t \<in> U \<Longrightarrow>\<forall>x. \<not>True \<and> x \<noteq> t \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_P: "\<forall> x. ~P \<and> P \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_conj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x) ;
\<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)\<rbrakk> \<Longrightarrow>
\<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma nmi_disj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x) ;
\<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)\<rbrakk> \<Longrightarrow>
\<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)" by auto
lemma npi_lt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> x \<sqsubset> t \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by (auto simp add: le_less)
lemma npi_gt: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> t \<sqsubset> x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_le: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> x \<sqsubseteq> t \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_ge: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> t \<sqsubseteq> x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_eq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>False \<and> x = t \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_neq: "t \<in> U \<Longrightarrow> \<forall>x. \<not>True \<and> x \<noteq> t \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u )" by auto
lemma npi_P: "\<forall> x. ~P \<and> P \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_conj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u) ; \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)\<rbrakk>
\<Longrightarrow> \<forall>x. \<not>(P1' \<and> P2') \<and> (P1 x \<and> P2 x) \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma npi_disj: "\<lbrakk>\<forall>x. \<not>P1' \<and> P1 x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u) ; \<forall>x. \<not>P2' \<and> P2 x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)\<rbrakk>
\<Longrightarrow> \<forall>x. \<not>(P1' \<or> P2') \<and> (P1 x \<or> P2 x) \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)" by auto
lemma lin_dense_lt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t \<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> x \<sqsubset> t \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> y \<sqsubset> t)"
proof(clarsimp)
fix x l u y assume tU: "t \<in> U" and noU: "\<forall>t. l \<sqsubset> t \<and> t \<sqsubset> u \<longrightarrow> t \<notin> U" and lx: "l \<sqsubset> x"
and xu: "x\<sqsubset>u" and px: "x \<sqsubset> t" and ly: "l\<sqsubset>y" and yu:"y \<sqsubset> u"
from tU noU ly yu have tny: "t\<noteq>y" by auto
{assume H: "t \<sqsubset> y"
from less_trans[OF lx px] less_trans[OF H yu]
have "l \<sqsubset> t \<and> t \<sqsubset> u" by simp
with tU noU have "False" by auto}
hence "\<not> t \<sqsubset> y" by auto hence "y \<sqsubseteq> t" by (simp add: not_less)
thus "y \<sqsubset> t" using tny by (simp add: less_le)
qed
lemma lin_dense_gt: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l \<sqsubset> x \<and> x \<sqsubset> u \<and> t \<sqsubset> x \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> t \<sqsubset> y)"
proof(clarsimp)
fix x l u y
assume tU: "t \<in> U" and noU: "\<forall>t. l \<sqsubset> t \<and> t \<sqsubset> u \<longrightarrow> t \<notin> U" and lx: "l \<sqsubset> x" and xu: "x\<sqsubset>u"
and px: "t \<sqsubset> x" and ly: "l\<sqsubset>y" and yu:"y \<sqsubset> u"
from tU noU ly yu have tny: "t\<noteq>y" by auto
{assume H: "y\<sqsubset> t"
from less_trans[OF ly H] less_trans[OF px xu] have "l \<sqsubset> t \<and> t \<sqsubset> u" by simp
with tU noU have "False" by auto}
hence "\<not> y\<sqsubset>t" by auto hence "t \<sqsubseteq> y" by (auto simp add: not_less)
thus "t \<sqsubset> y" using tny by (simp add:less_le)
qed
lemma lin_dense_le: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> x \<sqsubseteq> t \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> y\<sqsubseteq> t)"
proof(clarsimp)
fix x l u y
assume tU: "t \<in> U" and noU: "\<forall>t. l \<sqsubset> t \<and> t \<sqsubset> u \<longrightarrow> t \<notin> U" and lx: "l \<sqsubset> x" and xu: "x\<sqsubset>u"
and px: "x \<sqsubseteq> t" and ly: "l\<sqsubset>y" and yu:"y \<sqsubset> u"
from tU noU ly yu have tny: "t\<noteq>y" by auto
{assume H: "t \<sqsubset> y"
from less_le_trans[OF lx px] less_trans[OF H yu]
have "l \<sqsubset> t \<and> t \<sqsubset> u" by simp
with tU noU have "False" by auto}
hence "\<not> t \<sqsubset> y" by auto thus "y \<sqsubseteq> t" by (simp add: not_less)
qed
lemma lin_dense_ge: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> t \<sqsubseteq> x \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> t \<sqsubseteq> y)"
proof(clarsimp)
fix x l u y
assume tU: "t \<in> U" and noU: "\<forall>t. l \<sqsubset> t \<and> t \<sqsubset> u \<longrightarrow> t \<notin> U" and lx: "l \<sqsubset> x" and xu: "x\<sqsubset>u"
and px: "t \<sqsubseteq> x" and ly: "l\<sqsubset>y" and yu:"y \<sqsubset> u"
from tU noU ly yu have tny: "t\<noteq>y" by auto
{assume H: "y\<sqsubset> t"
from less_trans[OF ly H] le_less_trans[OF px xu]
have "l \<sqsubset> t \<and> t \<sqsubset> u" by simp
with tU noU have "False" by auto}
hence "\<not> y\<sqsubset>t" by auto thus "t \<sqsubseteq> y" by (simp add: not_less)
qed
lemma lin_dense_eq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> x = t \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> y= t)" by auto
lemma lin_dense_neq: "t \<in> U \<Longrightarrow> \<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> x \<noteq> t \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> y\<noteq> t)" by auto
lemma lin_dense_P: "\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P \<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P)" by auto
lemma lin_dense_conj:
"\<lbrakk>\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P1 x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P1 y) ;
\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P2 x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow>
\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> (P1 x \<and> P2 x)
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> (P1 y \<and> P2 y))"
by blast
lemma lin_dense_disj:
"\<lbrakk>\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P1 x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P1 y) ;
\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P2 x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P2 y)\<rbrakk> \<Longrightarrow>
\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> (P1 x \<or> P2 x)
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> (P1 y \<or> P2 y))"
by blast
lemma npmibnd: "\<lbrakk>\<forall>x. \<not> MP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x); \<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)\<rbrakk>
\<Longrightarrow> \<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u')"
by auto
lemma finite_set_intervals:
assumes px: "P x" and lx: "l \<sqsubseteq> x" and xu: "x \<sqsubseteq> u" and linS: "l\<in> S"
and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<sqsubseteq> x" and Su: "\<forall> x\<in> S. x \<sqsubseteq> u"
shows "\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a \<sqsubset> y \<and> y \<sqsubset> b \<longrightarrow> y \<notin> S) \<and> a \<sqsubseteq> x \<and> x \<sqsubseteq> b \<and> P x"
proof-
let ?Mx = "{y. y\<in> S \<and> y \<sqsubseteq> x}"
let ?xM = "{y. y\<in> S \<and> x \<sqsubseteq> y}"
let ?a = "Max ?Mx"
let ?b = "Min ?xM"
have MxS: "?Mx \<subseteq> S" by blast
hence fMx: "finite ?Mx" using fS finite_subset by auto
from lx linS have linMx: "l \<in> ?Mx" by blast
hence Mxne: "?Mx \<noteq> {}" by blast
have xMS: "?xM \<subseteq> S" by blast
hence fxM: "finite ?xM" using fS finite_subset by auto
from xu uinS have linxM: "u \<in> ?xM" by blast
hence xMne: "?xM \<noteq> {}" by blast
have ax:"?a \<sqsubseteq> x" using Mxne fMx by auto
have xb:"x \<sqsubseteq> ?b" using xMne fxM by auto
have "?a \<in> ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \<in> S" using MxS by blast
have "?b \<in> ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \<in> S" using xMS by blast
have noy:"\<forall> y. ?a \<sqsubset> y \<and> y \<sqsubset> ?b \<longrightarrow> y \<notin> S"
proof(clarsimp)
fix y assume ay: "?a \<sqsubset> y" and yb: "y \<sqsubset> ?b" and yS: "y \<in> S"
from yS have "y\<in> ?Mx \<or> y\<in> ?xM" by (auto simp add: linear)
moreover {assume "y \<in> ?Mx" hence "y \<sqsubseteq> ?a" using Mxne fMx by auto with ay have "False" by (simp add: not_le[symmetric])}
moreover {assume "y \<in> ?xM" hence "?b \<sqsubseteq> y" using xMne fxM by auto with yb have "False" by (simp add: not_le[symmetric])}
ultimately show "False" by blast
qed
from ainS binS noy ax xb px show ?thesis by blast
qed
lemma finite_set_intervals2:
assumes px: "P x" and lx: "l \<sqsubseteq> x" and xu: "x \<sqsubseteq> u" and linS: "l\<in> S"
and uinS: "u \<in> S" and fS:"finite S" and lS: "\<forall> x\<in> S. l \<sqsubseteq> x" and Su: "\<forall> x\<in> S. x \<sqsubseteq> u"
shows "(\<exists> s\<in> S. P s) \<or> (\<exists> a \<in> S. \<exists> b \<in> S. (\<forall> y. a \<sqsubset> y \<and> y \<sqsubset> b \<longrightarrow> y \<notin> S) \<and> a \<sqsubset> x \<and> x \<sqsubset> b \<and> P x)"
proof-
from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su]
obtain a and b where
as: "a\<in> S" and bs: "b\<in> S" and noS:"\<forall>y. a \<sqsubset> y \<and> y \<sqsubset> b \<longrightarrow> y \<notin> S"
and axb: "a \<sqsubseteq> x \<and> x \<sqsubseteq> b \<and> P x" by auto
from axb have "x= a \<or> x= b \<or> (a \<sqsubset> x \<and> x \<sqsubset> b)" by (auto simp add: le_less)
thus ?thesis using px as bs noS by blast
qed
end
text {* Linear order without upper bounds *}
locale linorder_no_ub = Linorder + assumes gt_ex: "\<forall>x. \<exists>y. x \<sqsubset> y"
begin
lemma ge_ex: "\<forall>x. \<exists>y. x \<sqsubseteq> y" using gt_ex by auto
text {* Theorems for @{text "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>+\<infinity>\<^esub>)"} *}
lemma pinf_conj:
assumes ex1: "\<exists>z1. \<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and ex2: "\<exists>z2. \<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
shows "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> ((P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2'))"
proof-
from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and z2: "\<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
from gt_ex obtain z where z:"max z1 z2 \<sqsubset> z" by blast
from z have zz1: "z1 \<sqsubset> z" and zz2: "z2 \<sqsubset> z" by simp_all
{fix x assume H: "z \<sqsubset> x"
from less_trans[OF zz1 H] less_trans[OF zz2 H]
have "(P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2')" using z1 zz1 z2 zz2 by auto
}
thus ?thesis by blast
qed
lemma pinf_disj:
assumes ex1: "\<exists>z1. \<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and ex2: "\<exists>z2. \<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
shows "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> ((P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2'))"
proof-
from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. z1 \<sqsubset> x \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and z2: "\<forall>x. z2 \<sqsubset> x \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
from gt_ex obtain z where z:"max z1 z2 \<sqsubset> z" by blast
from z have zz1: "z1 \<sqsubset> z" and zz2: "z2 \<sqsubset> z" by simp_all
{fix x assume H: "z \<sqsubset> x"
from less_trans[OF zz1 H] less_trans[OF zz2 H]
have "(P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2')" using z1 zz1 z2 zz2 by auto
}
thus ?thesis by blast
qed
lemma pinf_ex: assumes ex:"\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P1)" and p1: P1 shows "\<exists> x. P x"
proof-
from ex obtain z where z: "\<forall>x. z \<sqsubset> x \<longrightarrow> (P x \<longleftrightarrow> P1)" by blast
from gt_ex obtain x where x: "z \<sqsubset> x" by blast
from z x p1 show ?thesis by blast
qed
end
text {* Linear order without upper bounds *}
locale linorder_no_lb = Linorder + assumes lt_ex: "\<forall>x. \<exists>y. y \<sqsubset> x"
begin
lemma le_ex: "\<forall>x. \<exists>y. y \<sqsubseteq> x" using lt_ex by auto
text {* Theorems for @{text "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P\<^bsub>-\<infinity>\<^esub>)"} *}
lemma minf_conj:
assumes ex1: "\<exists>z1. \<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and ex2: "\<exists>z2. \<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
shows "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> ((P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2'))"
proof-
from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"and z2: "\<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
from lt_ex obtain z where z:"z \<sqsubset> min z1 z2" by blast
from z have zz1: "z \<sqsubset> z1" and zz2: "z \<sqsubset> z2" by simp_all
{fix x assume H: "x \<sqsubset> z"
from less_trans[OF H zz1] less_trans[OF H zz2]
have "(P1 x \<and> P2 x) \<longleftrightarrow> (P1' \<and> P2')" using z1 zz1 z2 zz2 by auto
}
thus ?thesis by blast
qed
lemma minf_disj:
assumes ex1: "\<exists>z1. \<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"
and ex2: "\<exists>z2. \<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')"
shows "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> ((P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2'))"
proof-
from ex1 ex2 obtain z1 and z2 where z1: "\<forall>x. x \<sqsubset> z1 \<longrightarrow> (P1 x \<longleftrightarrow> P1')"and z2: "\<forall>x. x \<sqsubset> z2 \<longrightarrow> (P2 x \<longleftrightarrow> P2')" by blast
from lt_ex obtain z where z:"z \<sqsubset> min z1 z2" by blast
from z have zz1: "z \<sqsubset> z1" and zz2: "z \<sqsubset> z2" by simp_all
{fix x assume H: "x \<sqsubset> z"
from less_trans[OF H zz1] less_trans[OF H zz2]
have "(P1 x \<or> P2 x) \<longleftrightarrow> (P1' \<or> P2')" using z1 zz1 z2 zz2 by auto
}
thus ?thesis by blast
qed
lemma minf_ex: assumes ex:"\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P1)" and p1: P1 shows "\<exists> x. P x"
proof-
from ex obtain z where z: "\<forall>x. x \<sqsubset> z \<longrightarrow> (P x \<longleftrightarrow> P1)" by blast
from lt_ex obtain x where x: "x \<sqsubset> z" by blast
from z x p1 show ?thesis by blast
qed
end
locale constr_dense_linear_order = linorder_no_lb + linorder_no_ub +
fixes between
assumes between_less: "\<forall>x y. x \<sqsubset> y \<longrightarrow> x \<sqsubset> between x y \<and> between x y \<sqsubset> y"
and between_same: "\<forall>x. between x x = x"
interpretation constr_dense_linear_order < dense_linear_order
apply unfold_locales
using gt_ex lt_ex between_less
by (auto, rule_tac x="between x y" in exI, simp)
context constr_dense_linear_order
begin
lemma rinf_U:
assumes fU: "finite U"
and lin_dense: "\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P y )"
and nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u')"
and nmi: "\<not> MP" and npi: "\<not> PP" and ex: "\<exists> x. P x"
shows "\<exists> u\<in> U. \<exists> u' \<in> U. P (between u u')"
proof-
from ex obtain x where px: "P x" by blast
from px nmi npi nmpiU have "\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u'" by auto
then obtain u and u' where uU:"u\<in> U" and uU': "u' \<in> U" and ux:"u \<sqsubseteq> x" and xu':"x \<sqsubseteq> u'" by auto
from uU have Une: "U \<noteq> {}" by auto
let ?l = "Min U"
let ?u = "Max U"
have linM: "?l \<in> U" using fU Une by simp
have uinM: "?u \<in> U" using fU Une by simp
have lM: "\<forall> t\<in> U. ?l \<sqsubseteq> t" using Une fU by auto
have Mu: "\<forall> t\<in> U. t \<sqsubseteq> ?u" using Une fU by auto
have th:"?l \<sqsubseteq> u" using uU Une lM by auto
from order_trans[OF th ux] have lx: "?l \<sqsubseteq> x" .
have th: "u' \<sqsubseteq> ?u" using uU' Une Mu by simp
from order_trans[OF xu' th] have xu: "x \<sqsubseteq> ?u" .
from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu]
have "(\<exists> s\<in> U. P s) \<or>
(\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U) \<and> t1 \<sqsubset> x \<and> x \<sqsubset> t2 \<and> P x)" .
moreover { fix u assume um: "u\<in>U" and pu: "P u"
have "between u u = u" by (simp add: between_same)
with um pu have "P (between u u)" by simp
with um have ?thesis by blast}
moreover{
assume "\<exists> t1\<in> U. \<exists> t2 \<in> U. (\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U) \<and> t1 \<sqsubset> x \<and> x \<sqsubset> t2 \<and> P x"
then obtain t1 and t2 where t1M: "t1 \<in> U" and t2M: "t2\<in> U"
and noM: "\<forall> y. t1 \<sqsubset> y \<and> y \<sqsubset> t2 \<longrightarrow> y \<notin> U" and t1x: "t1 \<sqsubset> x" and xt2: "x \<sqsubset> t2" and px: "P x"
by blast
from less_trans[OF t1x xt2] have t1t2: "t1 \<sqsubset> t2" .
let ?u = "between t1 t2"
from between_less t1t2 have t1lu: "t1 \<sqsubset> ?u" and ut2: "?u \<sqsubset> t2" by auto
from lin_dense[rule_format, OF] noM t1x xt2 px t1lu ut2 have "P ?u" by blast
with t1M t2M have ?thesis by blast}
ultimately show ?thesis by blast
qed
theorem fr_eq:
assumes fU: "finite U"
and lin_dense: "\<forall>x l u. (\<forall> t. l \<sqsubset> t \<and> t\<sqsubset> u \<longrightarrow> t \<notin> U) \<and> l\<sqsubset> x \<and> x \<sqsubset> u \<and> P x
\<longrightarrow> (\<forall> y. l \<sqsubset> y \<and> y \<sqsubset> u \<longrightarrow> P y )"
and nmibnd: "\<forall>x. \<not> MP \<and> P x \<longrightarrow> (\<exists> u\<in> U. u \<sqsubseteq> x)"
and npibnd: "\<forall>x. \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. x \<sqsubseteq> u)"
and mi: "\<exists>z. \<forall>x. x \<sqsubset> z \<longrightarrow> (P x = MP)" and pi: "\<exists>z. \<forall>x. z \<sqsubset> x \<longrightarrow> (P x = PP)"
shows "(\<exists> x. P x) \<equiv> (MP \<or> PP \<or> (\<exists> u \<in> U. \<exists> u'\<in> U. P (between u u')))"
(is "_ \<equiv> (_ \<or> _ \<or> ?F)" is "?E \<equiv> ?D")
proof-
{
assume px: "\<exists> x. P x"
have "MP \<or> PP \<or> (\<not> MP \<and> \<not> PP)" by blast
moreover {assume "MP \<or> PP" hence "?D" by blast}
moreover {assume nmi: "\<not> MP" and npi: "\<not> PP"
from npmibnd[OF nmibnd npibnd]
have nmpiU: "\<forall>x. \<not> MP \<and> \<not>PP \<and> P x \<longrightarrow> (\<exists> u\<in> U. \<exists> u' \<in> U. u \<sqsubseteq> x \<and> x \<sqsubseteq> u')" .
from rinf_U[OF fU lin_dense nmpiU nmi npi px] have "?D" by blast}
ultimately have "?D" by blast}
moreover
{ assume "?D"
moreover {assume m:"MP" from minf_ex[OF mi m] have "?E" .}
moreover {assume p: "PP" from pinf_ex[OF pi p] have "?E" . }
moreover {assume f:"?F" hence "?E" by blast}
ultimately have "?E" by blast}
ultimately have "?E = ?D" by blast thus "?E \<equiv> ?D" by simp
qed
lemmas minf_thms = minf_conj minf_disj minf_eq minf_neq minf_lt minf_le minf_gt minf_ge minf_P
lemmas pinf_thms = pinf_conj pinf_disj pinf_eq pinf_neq pinf_lt pinf_le pinf_gt pinf_ge pinf_P
lemmas nmi_thms = nmi_conj nmi_disj nmi_eq nmi_neq nmi_lt nmi_le nmi_gt nmi_ge nmi_P
lemmas npi_thms = npi_conj npi_disj npi_eq npi_neq npi_lt npi_le npi_gt npi_ge npi_P
lemmas lin_dense_thms = lin_dense_conj lin_dense_disj lin_dense_eq lin_dense_neq lin_dense_lt lin_dense_le lin_dense_gt lin_dense_ge lin_dense_P
lemma ferrack_axiom: "constr_dense_linear_order less_eq less between" by fact
lemma atoms: includes meta_term_syntax
shows "TERM (op \<sqsubset> :: 'a \<Rightarrow> _)" and "TERM (op \<sqsubseteq>)" and "TERM (op = :: 'a \<Rightarrow> _)" .
declare ferrack_axiom [ferrack minf: minf_thms pinf: pinf_thms
nmi: nmi_thms npi: npi_thms lindense:
lin_dense_thms qe: fr_eq atoms: atoms]
declaration {*
let
fun simps phi = map (Morphism.thm phi) [@{thm "not_less"}, @{thm "not_le"}]
fun generic_whatis phi =
let
val [lt, le] = map (Morphism.term phi)
(ProofContext.read_term_pats @{typ "dummy"} @{context} ["op \<sqsubset>", "op \<sqsubseteq>"]) (* FIXME avoid read? *)
fun h x t =
case term_of t of
Const("op =", _)$y$z => if term_of x aconv y then Ferrante_Rackoff_Data.Eq
else Ferrante_Rackoff_Data.Nox
| @{term "Not"}$(Const("op =", _)$y$z) => if term_of x aconv y then Ferrante_Rackoff_Data.NEq
else Ferrante_Rackoff_Data.Nox
| b$y$z => if Term.could_unify (b, lt) then
if term_of x aconv y then Ferrante_Rackoff_Data.Lt
else if term_of x aconv z then Ferrante_Rackoff_Data.Gt
else Ferrante_Rackoff_Data.Nox
else if Term.could_unify (b, le) then
if term_of x aconv y then Ferrante_Rackoff_Data.Le
else if term_of x aconv z then Ferrante_Rackoff_Data.Ge
else Ferrante_Rackoff_Data.Nox
else Ferrante_Rackoff_Data.Nox
| _ => Ferrante_Rackoff_Data.Nox
in h end
fun ss phi = HOL_ss addsimps (simps phi)
in
Ferrante_Rackoff_Data.funs @{thm "ferrack_axiom"}
{isolate_conv = K (K (K Thm.reflexive)), whatis = generic_whatis, simpset = ss}
end
*}
end
use "Tools/Qelim/ferrante_rackoff.ML"
method_setup ferrack = {*
Method.ctxt_args (Method.SIMPLE_METHOD' o FerranteRackoff.dlo_tac)
*} "Ferrante and Rackoff's algorithm for quantifier elimination in dense linear orders"
end