(* ID: "$Id$"
Authors: Julien Narboux and Christian Urban
This file introduces the infrastructure for the lemma
declaration "eqvts" "bijs" and "freshs".
By attaching [eqvt] [bij] or [fresh] to a lemma, the lemma gets stored
in a data-slot in the theory context. Possible modifiers
are [attribute add] and [attribute del] for adding and deleting,
respectively the lemma from the data-slot.
*)
signature NOMINAL_THMDECLS =
sig
val print_data: Proof.context -> unit
val eqvt_add: attribute
val eqvt_del: attribute
val eqvt_force_add: attribute
val eqvt_force_del: attribute
val setup: theory -> theory
val get_eqvt_thms: theory -> thm list
val get_fresh_thms: theory -> thm list
val get_bij_thms: theory -> thm list
val NOMINAL_EQVT_DEBUG : bool ref
end;
structure NominalThmDecls: NOMINAL_THMDECLS =
struct
structure Data = GenericDataFun
(
type T = {eqvts:thm list, freshs:thm list, bijs:thm list};
val empty = ({eqvts=[], freshs=[], bijs=[]}:T);
val extend = I;
fun merge _ (r1:T,r2:T) = {eqvts = Drule.merge_rules (#eqvts r1, #eqvts r2),
freshs = Drule.merge_rules (#freshs r1, #freshs r2),
bijs = Drule.merge_rules (#bijs r1, #bijs r2)}
);
(* Exception for when a theorem does not conform with form of an equivariance lemma. *)
(* There are two forms: one is an implication (for relations) and the other is an *)
(* equality (for functions). In the implication-case, say P ==> Q, Q must be equal *)
(* to P except that every free variable of Q, say x, is replaced by pi o x. In the *)
(* equality case, say lhs = rhs, the lhs must be of the form pi o t and the rhs must *)
(* be equal to t except that every free variable, say x, is replaced by pi o x. In *)
(* the implicational case it is also checked that the variables and permutation fit *)
(* together, i.e. are of the right "pt_class", so that a stronger version of the *)
(* eqality-lemma can be derived. *)
exception EQVT_FORM of string;
fun print_data ctxt =
let
val data = Data.get (Context.Proof ctxt);
fun pretty_thms msg thms =
Pretty.big_list msg (map (ProofContext.pretty_thm ctxt) thms);
in
Pretty.writeln (Pretty.chunks
[pretty_thms "Equivariance lemmas:" (#eqvts data),
pretty_thms "Freshness lemmas:" (#freshs data),
pretty_thms "Bijection lemmas:" (#bijs data)])
end;
val get_eqvt_thms = Context.Theory #> Data.get #> #eqvts;
val get_fresh_thms = Context.Theory #> Data.get #> #freshs;
val get_bij_thms = Context.Theory #> Data.get #> #bijs;
(* FIXME: should be a function in a library *)
fun mk_permT T = HOLogic.listT (HOLogic.mk_prodT (T, T));
val perm_bool = thm "perm_bool";
val perm_fun_def = thm "perm_fun_def";
val NOMINAL_EQVT_DEBUG = ref false;
fun tactic (msg,tac) =
if !NOMINAL_EQVT_DEBUG
then (EVERY [tac, print_tac ("after "^msg)])
else tac
fun dynamic_thms thy name = PureThy.get_thms thy (Name name)
fun tactic_eqvt ctx orig_thm pi typi =
let
val mypi = Thm.cterm_of ctx (Var (pi,typi))
val mypifree = Thm.cterm_of ctx (Const ("List.rev",typi --> typi) $ Free (fst pi,typi))
val perm_pi_simp = dynamic_thms ctx "perm_pi_simp"
in
EVERY [tactic ("iffI applied",rtac iffI 1),
tactic ("simplifies with orig_thm and perm_bool",
asm_full_simp_tac (HOL_basic_ss addsimps [perm_bool,orig_thm]) 1),
tactic ("applies orig_thm instantiated with rev pi",
dtac (Drule.cterm_instantiate [(mypi,mypifree)] orig_thm) 1),
tactic ("getting rid of all remaining perms",
full_simp_tac (HOL_basic_ss addsimps (perm_bool::perm_pi_simp)) 1)]
end;
fun get_derived_thm thy hyp concl orig_thm pi typi =
let
val lhs = (Const("Nominal.perm", typi --> HOLogic.boolT --> HOLogic.boolT) $ Var(pi,typi) $ hyp)
val goal_term = Logic.unvarify (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,concl)))
val _ = Display.print_cterm (cterm_of thy goal_term)
in
Goal.prove_global thy [] [] goal_term (fn _ => (tactic_eqvt thy orig_thm pi typi))
end
(* FIXME: something naughty here, but as long as there is no infrastructure to expose *)
(* the eqvt_thm_list to the user, we have to manually update the context and the *)
(* thm-list eqvt *)
fun update_context flag thms context =
let
val context' = fold (fn thm => Data.map (flag thm)) thms context
in
Context.mapping (snd o PureThy.add_thmss [(("eqvts",(#eqvts (Data.get context'))),[])]) I context'
end;
(* replaces every variable x in t with pi o x *)
fun apply_pi trm (pi,typi) =
let
fun only_vars t =
(case t of
Var (n,ty) => (Const ("Nominal.perm",typi --> ty --> ty) $ (Var (pi,typi)) $ (Var (n,ty)))
| _ => t)
in
map_aterms only_vars trm
end;
(* returns *the* pi which is in front of all variables, provided there *)
(* exists such a pi; otherwise raises EQVT_FORM *)
fun get_pi t thy =
let fun get_pi_aux s =
(case s of
(Const ("Nominal.perm",typrm) $
(Var (pi,typi as Type("List.list",[Type ("*",[Type (tyatm,[]),_])]))) $
(Var (n,ty))) =>
let
(* FIXME: this should be an operation the library *)
val class_name = (NameSpace.map_base (fn s => "pt_"^s) tyatm)
in
if (Type.of_sort (Sign.tsig_of thy) (ty,[class_name]))
then [(pi,typi)]
else raise
EQVT_FORM ("Could not find any permutation or an argument is not an instance of "^class_name)
end
| Abs (_,_,t1) => get_pi_aux t1
| (t1 $ t2) => get_pi_aux t1 @ get_pi_aux t2
| _ => [])
in
(* collect first all pi's in front of variables in t and then use distinct *)
(* to ensure that all pi's must have been the same, i.e. distinct returns *)
(* a singleton-list *)
(case (distinct (op =) (get_pi_aux t)) of
[(pi,typi)] => (pi,typi)
| _ => raise EQVT_FORM "All permutation should be the same")
end;
(* Either adds a theorem (orig_thm) to or deletes one from the equivaraince *)
(* lemma list depending on flag. To be added the lemma has to satisfy a *)
(* certain form. *)
fun eqvt_add_del_aux flag orig_thm context =
let
val thy = Context.theory_of context
val thms_to_be_added = (case (prop_of orig_thm) of
(* case: eqvt-lemma is of the implicational form *)
(Const("==>", _) $ (Const ("Trueprop",_) $ hyp) $ (Const ("Trueprop",_) $ concl)) =>
let
val (pi,typi) = get_pi concl thy
in
if (apply_pi hyp (pi,typi) = concl)
then
(warning ("equivariance lemma of the relational form");
[orig_thm, get_derived_thm thy hyp concl orig_thm pi typi])
else raise EQVT_FORM "Type Implication"
end
(* case: eqvt-lemma is of the equational form *)
| (Const ("Trueprop", _) $ (Const ("op =", _) $
(Const ("Nominal.perm",typrm) $ Var (pi,typi) $ lhs) $ rhs)) =>
(if (apply_pi lhs (pi,typi)) = rhs
then [orig_thm]
else raise EQVT_FORM "Type Equality")
| _ => raise EQVT_FORM "Type unknown")
in
update_context flag thms_to_be_added context
end
handle EQVT_FORM s =>
error (string_of_thm orig_thm ^ " does not comply with the form of an equivariance lemma ("^s^").")
(* in cases of bij- and freshness, we just add the lemmas to the *)
(* data-slot *)
fun simple_add_del_aux record_access name flag th context =
let
val context' = Data.map (flag th) context
in
Context.mapping (snd o PureThy.add_thmss [((name,(record_access (Data.get context'))),[])]) I context'
end
fun bij_add_del_aux f = simple_add_del_aux #bijs "bijs" f
fun fresh_add_del_aux f = simple_add_del_aux #freshs "freshs" f
fun eqvt_force_add_del_aux f = simple_add_del_aux #eqvts "eqvts" f
fun eqvt_map f th (r:Data.T) = {eqvts = (f th (#eqvts r)), freshs = #freshs r, bijs = #bijs r};
fun fresh_map f th (r:Data.T) = {eqvts = #eqvts r, freshs = (f th (#freshs r)), bijs = #bijs r};
fun bij_map f th (r:Data.T) = {eqvts = #eqvts r, freshs = #freshs r, bijs = (f th (#bijs r))};
val eqvt_add = Thm.declaration_attribute (eqvt_add_del_aux (eqvt_map Drule.add_rule));
val eqvt_del = Thm.declaration_attribute (eqvt_add_del_aux (eqvt_map Drule.del_rule));
val eqvt_force_add = Thm.declaration_attribute (eqvt_force_add_del_aux (eqvt_map Drule.add_rule));
val eqvt_force_del = Thm.declaration_attribute (eqvt_force_add_del_aux (eqvt_map Drule.del_rule));
val bij_add = Thm.declaration_attribute (bij_add_del_aux (bij_map Drule.add_rule));
val bij_del = Thm.declaration_attribute (bij_add_del_aux (bij_map Drule.del_rule));
val fresh_add = Thm.declaration_attribute (fresh_add_del_aux (fresh_map Drule.add_rule));
val fresh_del = Thm.declaration_attribute (fresh_add_del_aux (fresh_map Drule.del_rule));
val setup =
Attrib.add_attributes
[("eqvt", Attrib.add_del_args eqvt_add eqvt_del, "equivariance theorem declaration"),
("eqvt_force", Attrib.add_del_args eqvt_force_add eqvt_force_del,
"equivariance theorem declaration (without checking the form of the lemma)"),
("fresh", Attrib.add_del_args fresh_add fresh_del, "freshness theorem declaration"),
("bij", Attrib.add_del_args bij_add bij_del, "bijection theorem declaration")];
end;