src/HOL/Groups_Big.thy
author paulson <lp15@cam.ac.uk>
Wed, 17 Jun 2015 15:15:52 +0100
changeset 60494 e726f88232d3
parent 60429 d3d1e185cd63
child 60758 d8d85a8172b5
permissions -rw-r--r--
correccted the pretty-printing specs for setsum and setprod

(*  Title:      HOL/Groups_Big.thy
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
                with contributions by Jeremy Avigad
*)

section {* Big sum and product over finite (non-empty) sets *}

theory Groups_Big
imports Finite_Set
begin

subsection {* Generic monoid operation over a set *}

no_notation times (infixl "*" 70)
no_notation Groups.one ("1")

locale comm_monoid_set = comm_monoid
begin

interpretation comp_fun_commute f
  by default (simp add: fun_eq_iff left_commute)

interpretation comp?: comp_fun_commute "f \<circ> g"
  by (fact comp_comp_fun_commute)

definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
where
  eq_fold: "F g A = Finite_Set.fold (f \<circ> g) 1 A"

lemma infinite [simp]:
  "\<not> finite A \<Longrightarrow> F g A = 1"
  by (simp add: eq_fold)

lemma empty [simp]:
  "F g {} = 1"
  by (simp add: eq_fold)

lemma insert [simp]:
  assumes "finite A" and "x \<notin> A"
  shows "F g (insert x A) = g x * F g A"
  using assms by (simp add: eq_fold)

lemma remove:
  assumes "finite A" and "x \<in> A"
  shows "F g A = g x * F g (A - {x})"
proof -
  from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
    by (auto dest: mk_disjoint_insert)
  moreover from `finite A` A have "finite B" by simp
  ultimately show ?thesis by simp
qed

lemma insert_remove:
  assumes "finite A"
  shows "F g (insert x A) = g x * F g (A - {x})"
  using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)

lemma neutral:
  assumes "\<forall>x\<in>A. g x = 1"
  shows "F g A = 1"
  using assms by (induct A rule: infinite_finite_induct) simp_all

lemma neutral_const [simp]:
  "F (\<lambda>_. 1) A = 1"
  by (simp add: neutral)

lemma union_inter:
  assumes "finite A" and "finite B"
  shows "F g (A \<union> B) * F g (A \<inter> B) = F g A * F g B"
  -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
using assms proof (induct A)
  case empty then show ?case by simp
next
  case (insert x A) then show ?case
    by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
qed

corollary union_inter_neutral:
  assumes "finite A" and "finite B"
  and I0: "\<forall>x \<in> A \<inter> B. g x = 1"
  shows "F g (A \<union> B) = F g A * F g B"
  using assms by (simp add: union_inter [symmetric] neutral)

corollary union_disjoint:
  assumes "finite A" and "finite B"
  assumes "A \<inter> B = {}"
  shows "F g (A \<union> B) = F g A * F g B"
  using assms by (simp add: union_inter_neutral)

lemma union_diff2:
  assumes "finite A" and "finite B"
  shows "F g (A \<union> B) = F g (A - B) * F g (B - A) * F g (A \<inter> B)"
proof -
  have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
    by auto
  with assms show ?thesis by simp (subst union_disjoint, auto)+
qed

lemma subset_diff:
  assumes "B \<subseteq> A" and "finite A"
  shows "F g A = F g (A - B) * F g B"
proof -
  from assms have "finite (A - B)" by auto
  moreover from assms have "finite B" by (rule finite_subset)
  moreover from assms have "(A - B) \<inter> B = {}" by auto
  ultimately have "F g (A - B \<union> B) = F g (A - B) * F g B" by (rule union_disjoint)
  moreover from assms have "A \<union> B = A" by auto
  ultimately show ?thesis by simp
qed

lemma setdiff_irrelevant:
  assumes "finite A"
  shows "F g (A - {x. g x = z}) = F g A"
  using assms by (induct A) (simp_all add: insert_Diff_if) 

lemma not_neutral_contains_not_neutral:
  assumes "F g A \<noteq> z"
  obtains a where "a \<in> A" and "g a \<noteq> z"
proof -
  from assms have "\<exists>a\<in>A. g a \<noteq> z"
  proof (induct A rule: infinite_finite_induct)
    case (insert a A)
    then show ?case by simp (rule, simp)
  qed simp_all
  with that show thesis by blast
qed

lemma reindex:
  assumes "inj_on h A"
  shows "F g (h ` A) = F (g \<circ> h) A"
proof (cases "finite A")
  case True
  with assms show ?thesis by (simp add: eq_fold fold_image comp_assoc)
next
  case False with assms have "\<not> finite (h ` A)" by (blast dest: finite_imageD)
  with False show ?thesis by simp
qed

lemma cong:
  assumes "A = B"
  assumes g_h: "\<And>x. x \<in> B \<Longrightarrow> g x = h x"
  shows "F g A = F h B"
  using g_h unfolding `A = B`
  by (induct B rule: infinite_finite_induct) auto

lemma strong_cong [cong]:
  assumes "A = B" "\<And>x. x \<in> B =simp=> g x = h x"
  shows "F (\<lambda>x. g x) A = F (\<lambda>x. h x) B"
  by (rule cong) (insert assms, simp_all add: simp_implies_def)

lemma reindex_cong:
  assumes "inj_on l B"
  assumes "A = l ` B"
  assumes "\<And>x. x \<in> B \<Longrightarrow> g (l x) = h x"
  shows "F g A = F h B"
  using assms by (simp add: reindex)

lemma UNION_disjoint:
  assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
  and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
  shows "F g (UNION I A) = F (\<lambda>x. F g (A x)) I"
apply (insert assms)
apply (induct rule: finite_induct)
apply simp
apply atomize
apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
 prefer 2 apply blast
apply (subgoal_tac "A x Int UNION Fa A = {}")
 prefer 2 apply blast
apply (simp add: union_disjoint)
done

lemma Union_disjoint:
  assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {}"
  shows "F g (Union C) = (F \<circ> F) g C"
proof cases
  assume "finite C"
  from UNION_disjoint [OF this assms]
  show ?thesis by simp
qed (auto dest: finite_UnionD intro: infinite)

lemma distrib:
  "F (\<lambda>x. g x * h x) A = F g A * F h A"
  using assms by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute)

lemma Sigma:
  "finite A \<Longrightarrow> \<forall>x\<in>A. finite (B x) \<Longrightarrow> F (\<lambda>x. F (g x) (B x)) A = F (split g) (SIGMA x:A. B x)"
apply (subst Sigma_def)
apply (subst UNION_disjoint, assumption, simp)
 apply blast
apply (rule cong)
apply rule
apply (simp add: fun_eq_iff)
apply (subst UNION_disjoint, simp, simp)
 apply blast
apply (simp add: comp_def)
done

lemma related: 
  assumes Re: "R 1 1" 
  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
  shows "R (F h S) (F g S)"
  using fS by (rule finite_subset_induct) (insert assms, auto)

lemma mono_neutral_cong_left:
  assumes "finite T" and "S \<subseteq> T" and "\<forall>i \<in> T - S. h i = 1"
  and "\<And>x. x \<in> S \<Longrightarrow> g x = h x" shows "F g S = F h T"
proof-
  have eq: "T = S \<union> (T - S)" using `S \<subseteq> T` by blast
  have d: "S \<inter> (T - S) = {}" using `S \<subseteq> T` by blast
  from `finite T` `S \<subseteq> T` have f: "finite S" "finite (T - S)"
    by (auto intro: finite_subset)
  show ?thesis using assms(4)
    by (simp add: union_disjoint [OF f d, unfolded eq [symmetric]] neutral [OF assms(3)])
qed

lemma mono_neutral_cong_right:
  "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> g x = h x \<rbrakk>
   \<Longrightarrow> F g T = F h S"
  by (auto intro!: mono_neutral_cong_left [symmetric])

lemma mono_neutral_left:
  "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g S = F g T"
  by (blast intro: mono_neutral_cong_left)

lemma mono_neutral_right:
  "\<lbrakk> finite T;  S \<subseteq> T;  \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g T = F g S"
  by (blast intro!: mono_neutral_left [symmetric])

lemma reindex_bij_betw: "bij_betw h S T \<Longrightarrow> F (\<lambda>x. g (h x)) S = F g T"
  by (auto simp: bij_betw_def reindex)

lemma reindex_bij_witness:
  assumes witness:
    "\<And>a. a \<in> S \<Longrightarrow> i (j a) = a"
    "\<And>a. a \<in> S \<Longrightarrow> j a \<in> T"
    "\<And>b. b \<in> T \<Longrightarrow> j (i b) = b"
    "\<And>b. b \<in> T \<Longrightarrow> i b \<in> S"
  assumes eq:
    "\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
  shows "F g S = F h T"
proof -
  have "bij_betw j S T"
    using bij_betw_byWitness[where A=S and f=j and f'=i and A'=T] witness by auto
  moreover have "F g S = F (\<lambda>x. h (j x)) S"
    by (intro cong) (auto simp: eq)
  ultimately show ?thesis
    by (simp add: reindex_bij_betw)
qed

lemma reindex_bij_betw_not_neutral:
  assumes fin: "finite S'" "finite T'"
  assumes bij: "bij_betw h (S - S') (T - T')"
  assumes nn:
    "\<And>a. a \<in> S' \<Longrightarrow> g (h a) = z"
    "\<And>b. b \<in> T' \<Longrightarrow> g b = z"
  shows "F (\<lambda>x. g (h x)) S = F g T"
proof -
  have [simp]: "finite S \<longleftrightarrow> finite T"
    using bij_betw_finite[OF bij] fin by auto

  show ?thesis
  proof cases
    assume "finite S"
    with nn have "F (\<lambda>x. g (h x)) S = F (\<lambda>x. g (h x)) (S - S')"
      by (intro mono_neutral_cong_right) auto
    also have "\<dots> = F g (T - T')"
      using bij by (rule reindex_bij_betw)
    also have "\<dots> = F g T"
      using nn `finite S` by (intro mono_neutral_cong_left) auto
    finally show ?thesis .
  qed simp
qed

lemma reindex_nontrivial:
  assumes "finite A"
  and nz: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> h x = h y \<Longrightarrow> g (h x) = 1"
  shows "F g (h ` A) = F (g \<circ> h) A"
proof (subst reindex_bij_betw_not_neutral [symmetric])
  show "bij_betw h (A - {x \<in> A. (g \<circ> h) x = 1}) (h ` A - h ` {x \<in> A. (g \<circ> h) x = 1})"
    using nz by (auto intro!: inj_onI simp: bij_betw_def)
qed (insert `finite A`, auto)

lemma reindex_bij_witness_not_neutral:
  assumes fin: "finite S'" "finite T'"
  assumes witness:
    "\<And>a. a \<in> S - S' \<Longrightarrow> i (j a) = a"
    "\<And>a. a \<in> S - S' \<Longrightarrow> j a \<in> T - T'"
    "\<And>b. b \<in> T - T' \<Longrightarrow> j (i b) = b"
    "\<And>b. b \<in> T - T' \<Longrightarrow> i b \<in> S - S'"
  assumes nn:
    "\<And>a. a \<in> S' \<Longrightarrow> g a = z"
    "\<And>b. b \<in> T' \<Longrightarrow> h b = z"
  assumes eq:
    "\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
  shows "F g S = F h T"
proof -
  have bij: "bij_betw j (S - (S' \<inter> S)) (T - (T' \<inter> T))"
    using witness by (intro bij_betw_byWitness[where f'=i]) auto
  have F_eq: "F g S = F (\<lambda>x. h (j x)) S"
    by (intro cong) (auto simp: eq)
  show ?thesis
    unfolding F_eq using fin nn eq
    by (intro reindex_bij_betw_not_neutral[OF _ _ bij]) auto
qed

lemma delta: 
  assumes fS: "finite S"
  shows "F (\<lambda>k. if k = a then b k else 1) S = (if a \<in> S then b a else 1)"
proof-
  let ?f = "(\<lambda>k. if k=a then b k else 1)"
  { assume a: "a \<notin> S"
    hence "\<forall>k\<in>S. ?f k = 1" by simp
    hence ?thesis  using a by simp }
  moreover
  { assume a: "a \<in> S"
    let ?A = "S - {a}"
    let ?B = "{a}"
    have eq: "S = ?A \<union> ?B" using a by blast 
    have dj: "?A \<inter> ?B = {}" by simp
    from fS have fAB: "finite ?A" "finite ?B" by auto  
    have "F ?f S = F ?f ?A * F ?f ?B"
      using union_disjoint [OF fAB dj, of ?f, unfolded eq [symmetric]]
      by simp
    then have ?thesis using a by simp }
  ultimately show ?thesis by blast
qed

lemma delta': 
  assumes fS: "finite S"
  shows "F (\<lambda>k. if a = k then b k else 1) S = (if a \<in> S then b a else 1)"
  using delta [OF fS, of a b, symmetric] by (auto intro: cong)

lemma If_cases:
  fixes P :: "'b \<Rightarrow> bool" and g h :: "'b \<Rightarrow> 'a"
  assumes fA: "finite A"
  shows "F (\<lambda>x. if P x then h x else g x) A =
    F h (A \<inter> {x. P x}) * F g (A \<inter> - {x. P x})"
proof -
  have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}" 
          "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}" 
    by blast+
  from fA 
  have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
  let ?g = "\<lambda>x. if P x then h x else g x"
  from union_disjoint [OF f a(2), of ?g] a(1)
  show ?thesis
    by (subst (1 2) cong) simp_all
qed

lemma cartesian_product:
   "F (\<lambda>x. F (g x) B) A = F (split g) (A <*> B)"
apply (rule sym)
apply (cases "finite A") 
 apply (cases "finite B") 
  apply (simp add: Sigma)
 apply (cases "A={}", simp)
 apply simp
apply (auto intro: infinite dest: finite_cartesian_productD2)
apply (cases "B = {}") apply (auto intro: infinite dest: finite_cartesian_productD1)
done

lemma inter_restrict:
  assumes "finite A"
  shows "F g (A \<inter> B) = F (\<lambda>x. if x \<in> B then g x else 1) A"
proof -
  let ?g = "\<lambda>x. if x \<in> A \<inter> B then g x else 1"
  have "\<forall>i\<in>A - A \<inter> B. (if i \<in> A \<inter> B then g i else 1) = 1"
   by simp
  moreover have "A \<inter> B \<subseteq> A" by blast
  ultimately have "F ?g (A \<inter> B) = F ?g A" using `finite A`
    by (intro mono_neutral_left) auto
  then show ?thesis by simp
qed

lemma inter_filter:
  "finite A \<Longrightarrow> F g {x \<in> A. P x} = F (\<lambda>x. if P x then g x else 1) A"
  by (simp add: inter_restrict [symmetric, of A "{x. P x}" g, simplified mem_Collect_eq] Int_def)

lemma Union_comp:
  assumes "\<forall>A \<in> B. finite A"
    and "\<And>A1 A2 x. A1 \<in> B \<Longrightarrow> A2 \<in> B  \<Longrightarrow> A1 \<noteq> A2 \<Longrightarrow> x \<in> A1 \<Longrightarrow> x \<in> A2 \<Longrightarrow> g x = 1"
  shows "F g (\<Union>B) = (F \<circ> F) g B"
using assms proof (induct B rule: infinite_finite_induct)
  case (infinite A)
  then have "\<not> finite (\<Union>A)" by (blast dest: finite_UnionD)
  with infinite show ?case by simp
next
  case empty then show ?case by simp
next
  case (insert A B)
  then have "finite A" "finite B" "finite (\<Union>B)" "A \<notin> B"
    and "\<forall>x\<in>A \<inter> \<Union>B. g x = 1"
    and H: "F g (\<Union>B) = (F o F) g B" by auto
  then have "F g (A \<union> \<Union>B) = F g A * F g (\<Union>B)"
    by (simp add: union_inter_neutral)
  with `finite B` `A \<notin> B` show ?case
    by (simp add: H)
qed

lemma commute:
  "F (\<lambda>i. F (g i) B) A = F (\<lambda>j. F (\<lambda>i. g i j) A) B"
  unfolding cartesian_product
  by (rule reindex_bij_witness [where i = "\<lambda>(i, j). (j, i)" and j = "\<lambda>(i, j). (j, i)"]) auto

lemma commute_restrict:
  "finite A \<Longrightarrow> finite B \<Longrightarrow>
    F (\<lambda>x. F (g x) {y. y \<in> B \<and> R x y}) A = F (\<lambda>y. F (\<lambda>x. g x y) {x. x \<in> A \<and> R x y}) B"
  by (simp add: inter_filter) (rule commute)

lemma Plus:
  fixes A :: "'b set" and B :: "'c set"
  assumes fin: "finite A" "finite B"
  shows "F g (A <+> B) = F (g \<circ> Inl) A * F (g \<circ> Inr) B"
proof -
  have "A <+> B = Inl ` A \<union> Inr ` B" by auto
  moreover from fin have "finite (Inl ` A :: ('b + 'c) set)" "finite (Inr ` B :: ('b + 'c) set)"
    by auto
  moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('b + 'c) set)" by auto
  moreover have "inj_on (Inl :: 'b \<Rightarrow> 'b + 'c) A" "inj_on (Inr :: 'c \<Rightarrow> 'b + 'c) B"
    by (auto intro: inj_onI)
  ultimately show ?thesis using fin
    by (simp add: union_disjoint reindex)
qed

lemma same_carrier:
  assumes "finite C"
  assumes subset: "A \<subseteq> C" "B \<subseteq> C"
  assumes trivial: "\<And>a. a \<in> C - A \<Longrightarrow> g a = 1" "\<And>b. b \<in> C - B \<Longrightarrow> h b = 1"
  shows "F g A = F h B \<longleftrightarrow> F g C = F h C"
proof -
  from `finite C` subset have
    "finite A" and "finite B" and "finite (C - A)" and "finite (C - B)"
    by (auto elim: finite_subset)
  from subset have [simp]: "A - (C - A) = A" by auto
  from subset have [simp]: "B - (C - B) = B" by auto
  from subset have "C = A \<union> (C - A)" by auto
  then have "F g C = F g (A \<union> (C - A))" by simp
  also have "\<dots> = F g (A - (C - A)) * F g (C - A - A) * F g (A \<inter> (C - A))"
    using `finite A` `finite (C - A)` by (simp only: union_diff2)
  finally have P: "F g C = F g A" using trivial by simp
  from subset have "C = B \<union> (C - B)" by auto
  then have "F h C = F h (B \<union> (C - B))" by simp
  also have "\<dots> = F h (B - (C - B)) * F h (C - B - B) * F h (B \<inter> (C - B))"
    using `finite B` `finite (C - B)` by (simp only: union_diff2)
  finally have Q: "F h C = F h B" using trivial by simp
  from P Q show ?thesis by simp
qed

lemma same_carrierI:
  assumes "finite C"
  assumes subset: "A \<subseteq> C" "B \<subseteq> C"
  assumes trivial: "\<And>a. a \<in> C - A \<Longrightarrow> g a = 1" "\<And>b. b \<in> C - B \<Longrightarrow> h b = 1"
  assumes "F g C = F h C"
  shows "F g A = F h B"
  using assms same_carrier [of C A B] by simp

end

notation times (infixl "*" 70)
notation Groups.one ("1")


subsection {* Generalized summation over a set *}

context comm_monoid_add
begin

definition setsum :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
where
  "setsum = comm_monoid_set.F plus 0"

sublocale setsum!: comm_monoid_set plus 0
where
  "comm_monoid_set.F plus 0 = setsum"
proof -
  show "comm_monoid_set plus 0" ..
  then interpret setsum!: comm_monoid_set plus 0 .
  from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule
qed

abbreviation
  Setsum ("\<Sum>_" [1000] 999) where
  "\<Sum>A \<equiv> setsum (%x. x) A"

end

text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
written @{text"\<Sum>x\<in>A. e"}. *}

syntax
  "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_./ _)" [0, 51, 10] 10)
syntax (xsymbols)
  "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(2\<Sum>_\<in>_./ _)" [0, 51, 10] 10)
syntax (HTML output)
  "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(2\<Sum>_\<in>_./ _)" [0, 51, 10] 10)

translations -- {* Beware of argument permutation! *}
  "SUM i:A. b" == "CONST setsum (%i. b) A"
  "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A"

text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 @{text"\<Sum>x|P. e"}. *}

syntax
  "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
syntax (xsymbols)
  "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Sum>_ | (_)./ _)" [0,0,10] 10)
syntax (HTML output)
  "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Sum>_ | (_)./ _)" [0,0,10] 10)

translations
  "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
  "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"

print_translation {*
let
  fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
        if x <> y then raise Match
        else
          let
            val x' = Syntax_Trans.mark_bound_body (x, Tx);
            val t' = subst_bound (x', t);
            val P' = subst_bound (x', P);
          in
            Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t'
          end
    | setsum_tr' _ = raise Match;
in [(@{const_syntax setsum}, K setsum_tr')] end
*}

text {* TODO generalization candidates *}

lemma setsum_image_gen:
  assumes fS: "finite S"
  shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
proof-
  { fix x assume "x \<in> S" then have "{y. y\<in> f`S \<and> f x = y} = {f x}" by auto }
  hence "setsum g S = setsum (\<lambda>x. setsum (\<lambda>y. g x) {y. y\<in> f`S \<and> f x = y}) S"
    by simp
  also have "\<dots> = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
    by (rule setsum.commute_restrict [OF fS finite_imageI [OF fS]])
  finally show ?thesis .
qed


subsubsection {* Properties in more restricted classes of structures *}

lemma setsum_Un: "finite A ==> finite B ==>
  (setsum f (A Un B) :: 'a :: ab_group_add) =
   setsum f A + setsum f B - setsum f (A Int B)"
by (subst setsum.union_inter [symmetric], auto simp add: algebra_simps)

lemma setsum_Un2:
  assumes "finite (A \<union> B)"
  shows "setsum f (A \<union> B) = setsum f (A - B) + setsum f (B - A) + setsum f (A \<inter> B)"
proof -
  have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
    by auto
  with assms show ?thesis by simp (subst setsum.union_disjoint, auto)+
qed

lemma setsum_diff1: "finite A \<Longrightarrow>
  (setsum f (A - {a}) :: ('a::ab_group_add)) =
  (if a:A then setsum f A - f a else setsum f A)"
by (erule finite_induct) (auto simp add: insert_Diff_if)

lemma setsum_diff:
  assumes le: "finite A" "B \<subseteq> A"
  shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
proof -
  from le have finiteB: "finite B" using finite_subset by auto
  show ?thesis using finiteB le
  proof induct
    case empty
    thus ?case by auto
  next
    case (insert x F)
    thus ?case using le finiteB 
      by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
  qed
qed

lemma setsum_mono:
  assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
  shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
proof (cases "finite K")
  case True
  thus ?thesis using le
  proof induct
    case empty
    thus ?case by simp
  next
    case insert
    thus ?case using add_mono by fastforce
  qed
next
  case False then show ?thesis by simp
qed

lemma setsum_strict_mono:
  fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
  assumes "finite A"  "A \<noteq> {}"
    and "!!x. x:A \<Longrightarrow> f x < g x"
  shows "setsum f A < setsum g A"
  using assms
proof (induct rule: finite_ne_induct)
  case singleton thus ?case by simp
next
  case insert thus ?case by (auto simp: add_strict_mono)
qed

lemma setsum_strict_mono_ex1:
fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_cancel_ab_semigroup_add}"
assumes "finite A" and "ALL x:A. f x \<le> g x" and "EX a:A. f a < g a"
shows "setsum f A < setsum g A"
proof-
  from assms(3) obtain a where a: "a:A" "f a < g a" by blast
  have "setsum f A = setsum f ((A-{a}) \<union> {a})"
    by(simp add:insert_absorb[OF `a:A`])
  also have "\<dots> = setsum f (A-{a}) + setsum f {a}"
    using `finite A` by(subst setsum.union_disjoint) auto
  also have "setsum f (A-{a}) \<le> setsum g (A-{a})"
    by(rule setsum_mono)(simp add: assms(2))
  also have "setsum f {a} < setsum g {a}" using a by simp
  also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})"
    using `finite A` by(subst setsum.union_disjoint[symmetric]) auto
  also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF `a:A`])
  finally show ?thesis by (auto simp add: add_right_mono add_strict_left_mono)
qed

lemma setsum_negf: "(\<Sum>x\<in>A. - f x::'a::ab_group_add) = - (\<Sum>x\<in>A. f x)"
proof (cases "finite A")
  case True thus ?thesis by (induct set: finite) auto
next
  case False thus ?thesis by simp
qed

lemma setsum_subtractf: "(\<Sum>x\<in>A. f x - g x::'a::ab_group_add) = (\<Sum>x\<in>A. f x) - (\<Sum>x\<in>A. g x)"
  using setsum.distrib [of f "- g" A] by (simp add: setsum_negf)

lemma setsum_subtractf_nat:
  "(\<And>x. x \<in> A \<Longrightarrow> g x \<le> f x) \<Longrightarrow> (\<Sum>x\<in>A. f x - g x::nat) = (\<Sum>x\<in>A. f x) - (\<Sum>x\<in>A. g x)"
  by (induction A rule: infinite_finite_induct) (auto simp: setsum_mono)

lemma setsum_nonneg:
  assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
  shows "0 \<le> setsum f A"
proof (cases "finite A")
  case True thus ?thesis using nn
  proof induct
    case empty then show ?case by simp
  next
    case (insert x F)
    then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono)
    with insert show ?case by simp
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_nonpos:
  assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
  shows "setsum f A \<le> 0"
proof (cases "finite A")
  case True thus ?thesis using np
  proof induct
    case empty then show ?case by simp
  next
    case (insert x F)
    then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono)
    with insert show ?case by simp
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_nonneg_leq_bound:
  fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
  assumes "finite s" "\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0" "(\<Sum>i \<in> s. f i) = B" "i \<in> s"
  shows "f i \<le> B"
proof -
  have "0 \<le> (\<Sum> i \<in> s - {i}. f i)" and "0 \<le> f i"
    using assms by (auto intro!: setsum_nonneg)
  moreover
  have "(\<Sum> i \<in> s - {i}. f i) + f i = B"
    using assms by (simp add: setsum_diff1)
  ultimately show ?thesis by auto
qed

lemma setsum_nonneg_0:
  fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
  assumes "finite s" and pos: "\<And> i. i \<in> s \<Longrightarrow> f i \<ge> 0"
  and "(\<Sum> i \<in> s. f i) = 0" and i: "i \<in> s"
  shows "f i = 0"
  using setsum_nonneg_leq_bound[OF assms] pos[OF i] by auto

lemma setsum_mono2:
fixes f :: "'a \<Rightarrow> 'b :: ordered_comm_monoid_add"
assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b"
shows "setsum f A \<le> setsum f B"
proof -
  have "setsum f A \<le> setsum f A + setsum f (B-A)"
    by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
  also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
    by (simp add: setsum.union_disjoint del:Un_Diff_cancel)
  also have "A \<union> (B-A) = B" using sub by blast
  finally show ?thesis .
qed

lemma setsum_le_included:
  fixes f :: "'a \<Rightarrow> 'b::ordered_comm_monoid_add"
  assumes "finite s" "finite t"
  and "\<forall>y\<in>t. 0 \<le> g y" "(\<forall>x\<in>s. \<exists>y\<in>t. i y = x \<and> f x \<le> g y)"
  shows "setsum f s \<le> setsum g t"
proof -
  have "setsum f s \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) s"
  proof (rule setsum_mono)
    fix y assume "y \<in> s"
    with assms obtain z where z: "z \<in> t" "y = i z" "f y \<le> g z" by auto
    with assms show "f y \<le> setsum g {x \<in> t. i x = y}" (is "?A y \<le> ?B y")
      using order_trans[of "?A (i z)" "setsum g {z}" "?B (i z)", intro]
      by (auto intro!: setsum_mono2)
  qed
  also have "... \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) (i ` t)"
    using assms(2-4) by (auto intro!: setsum_mono2 setsum_nonneg)
  also have "... \<le> setsum g t"
    using assms by (auto simp: setsum_image_gen[symmetric])
  finally show ?thesis .
qed

lemma setsum_mono3: "finite B ==> A <= B ==> 
    ALL x: B - A. 
      0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
        setsum f A <= setsum f B"
  apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)")
  apply (erule ssubst)
  apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)")
  apply simp
  apply (rule add_left_mono)
  apply (erule setsum_nonneg)
  apply (subst setsum.union_disjoint [THEN sym])
  apply (erule finite_subset, assumption)
  apply (rule finite_subset)
  prefer 2
  apply assumption
  apply (auto simp add: sup_absorb2)
done

lemma setsum_right_distrib: 
  fixes f :: "'a => ('b::semiring_0)"
  shows "r * setsum f A = setsum (%n. r * f n) A"
proof (cases "finite A")
  case True
  thus ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert x A) thus ?case by (simp add: distrib_left)
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_left_distrib:
  "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)"
proof (cases "finite A")
  case True
  then show ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert x A) thus ?case by (simp add: distrib_right)
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_divide_distrib:
  "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)"
proof (cases "finite A")
  case True
  then show ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert x A) thus ?case by (simp add: add_divide_distrib)
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_abs[iff]: 
  fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
  shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A"
proof (cases "finite A")
  case True
  thus ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert x A)
    thus ?case by (auto intro: abs_triangle_ineq order_trans)
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_abs_ge_zero[iff]: 
  fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
  shows "0 \<le> setsum (%i. abs(f i)) A"
proof (cases "finite A")
  case True
  thus ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert x A) thus ?case by auto
  qed
next
  case False thus ?thesis by simp
qed

lemma abs_setsum_abs[simp]: 
  fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
  shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))"
proof (cases "finite A")
  case True
  thus ?thesis
  proof induct
    case empty thus ?case by simp
  next
    case (insert a A)
    hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp
    also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>"  using insert by simp
    also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>"
      by (simp del: abs_of_nonneg)
    also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp
    finally show ?case .
  qed
next
  case False thus ?thesis by simp
qed

lemma setsum_diff1_ring: assumes "finite A" "a \<in> A"
  shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
  unfolding setsum.remove [OF assms] by auto

lemma setsum_product:
  fixes f :: "'a => ('b::semiring_0)"
  shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)"
  by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum.commute)

lemma setsum_mult_setsum_if_inj:
fixes f :: "'a => ('b::semiring_0)"
shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==>
  setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
by(auto simp: setsum_product setsum.cartesian_product
        intro!:  setsum.reindex_cong[symmetric])

lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
apply (case_tac "finite A")
 prefer 2 apply simp
apply (erule rev_mp)
apply (erule finite_induct, auto)
done

lemma setsum_eq_0_iff [simp]:
  "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
  by (induct set: finite) auto

lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow>
  setsum f A = Suc 0 \<longleftrightarrow> (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))"
apply(erule finite_induct)
apply (auto simp add:add_is_1)
done

lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]

lemma setsum_Un_nat: "finite A ==> finite B ==>
  (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
  -- {* For the natural numbers, we have subtraction. *}
by (subst setsum.union_inter [symmetric], auto simp add: algebra_simps)

lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
  (if a:A then setsum f A - f a else setsum f A)"
apply (case_tac "finite A")
 prefer 2 apply simp
apply (erule finite_induct)
 apply (auto simp add: insert_Diff_if)
apply (drule_tac a = a in mk_disjoint_insert, auto)
done

lemma setsum_diff_nat: 
assumes "finite B" and "B \<subseteq> A"
shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
using assms
proof induct
  show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
next
  fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
    and xFinA: "insert x F \<subseteq> A"
    and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
  from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
  from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
    by (simp add: setsum_diff1_nat)
  from xFinA have "F \<subseteq> A" by simp
  with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
  with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
    by simp
  from xnotinF have "A - insert x F = (A - F) - {x}" by auto
  with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
    by simp
  from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
  with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
    by simp
  thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
qed

lemma setsum_comp_morphism:
  assumes "h 0 = 0" and "\<And>x y. h (x + y) = h x + h y"
  shows "setsum (h \<circ> g) A = h (setsum g A)"
proof (cases "finite A")
  case False then show ?thesis by (simp add: assms)
next
  case True then show ?thesis by (induct A) (simp_all add: assms)
qed

lemma (in comm_semiring_1) dvd_setsum:
  "(\<And>a. a \<in> A \<Longrightarrow> d dvd f a) \<Longrightarrow> d dvd setsum f A"
  by (induct A rule: infinite_finite_induct) simp_all


subsubsection {* Cardinality as special case of @{const setsum} *}

lemma card_eq_setsum:
  "card A = setsum (\<lambda>x. 1) A"
proof -
  have "plus \<circ> (\<lambda>_. Suc 0) = (\<lambda>_. Suc)"
    by (simp add: fun_eq_iff)
  then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) = Finite_Set.fold (\<lambda>_. Suc)"
    by (rule arg_cong)
  then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) 0 A = Finite_Set.fold (\<lambda>_. Suc) 0 A"
    by (blast intro: fun_cong)
  then show ?thesis by (simp add: card.eq_fold setsum.eq_fold)
qed

lemma setsum_constant [simp]:
  "(\<Sum>x \<in> A. y) = of_nat (card A) * y"
apply (cases "finite A")
apply (erule finite_induct)
apply (auto simp add: algebra_simps)
done

lemma setsum_Suc: "setsum (\<lambda>x. Suc(f x)) A = setsum f A + card A"
  using setsum.distrib[of f "\<lambda>_. 1" A] 
  by simp

lemma setsum_bounded:
  assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
  shows "setsum f A \<le> of_nat (card A) * K"
proof (cases "finite A")
  case True
  thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
next
  case False thus ?thesis by simp
qed

lemma card_UN_disjoint:
  assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
    and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
  shows "card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
proof -
  have "(\<Sum>i\<in>I. card (A i)) = (\<Sum>i\<in>I. \<Sum>x\<in>A i. 1)" by simp
  with assms show ?thesis by (simp add: card_eq_setsum setsum.UNION_disjoint del: setsum_constant)
qed

lemma card_Union_disjoint:
  "finite C ==> (ALL A:C. finite A) ==>
   (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
   ==> card (Union C) = setsum card C"
apply (frule card_UN_disjoint [of C id])
apply simp_all
done

lemma setsum_multicount_gen:
  assumes "finite s" "finite t" "\<forall>j\<in>t. (card {i\<in>s. R i j} = k j)"
  shows "setsum (\<lambda>i. (card {j\<in>t. R i j})) s = setsum k t" (is "?l = ?r")
proof-
  have "?l = setsum (\<lambda>i. setsum (\<lambda>x.1) {j\<in>t. R i j}) s" by auto
  also have "\<dots> = ?r" unfolding setsum.commute_restrict [OF assms(1-2)]
    using assms(3) by auto
  finally show ?thesis .
qed

lemma setsum_multicount:
  assumes "finite S" "finite T" "\<forall>j\<in>T. (card {i\<in>S. R i j} = k)"
  shows "setsum (\<lambda>i. card {j\<in>T. R i j}) S = k * card T" (is "?l = ?r")
proof-
  have "?l = setsum (\<lambda>i. k) T" by (rule setsum_multicount_gen) (auto simp: assms)
  also have "\<dots> = ?r" by (simp add: mult.commute)
  finally show ?thesis by auto
qed

lemma (in ordered_comm_monoid_add) setsum_pos: 
  "finite I \<Longrightarrow> I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> 0 < f i) \<Longrightarrow> 0 < setsum f I"
  by (induct I rule: finite_ne_induct) (auto intro: add_pos_pos)


subsubsection {* Cardinality of products *}

lemma card_SigmaI [simp]:
  "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
  \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
by(simp add: card_eq_setsum setsum.Sigma del:setsum_constant)

(*
lemma SigmaI_insert: "y \<notin> A ==>
  (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
  by auto
*)

lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
  by (cases "finite A \<and> finite B")
    (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2)

lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
by (simp add: card_cartesian_product)


subsection {* Generalized product over a set *}

context comm_monoid_mult
begin

definition setprod :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
where
  "setprod = comm_monoid_set.F times 1"

sublocale setprod!: comm_monoid_set times 1
where
  "comm_monoid_set.F times 1 = setprod"
proof -
  show "comm_monoid_set times 1" ..
  then interpret setprod!: comm_monoid_set times 1 .
  from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule
qed

abbreviation
  Setprod ("\<Prod>_" [1000] 999) where
  "\<Prod>A \<equiv> setprod (\<lambda>x. x) A"

end

syntax
  "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(4PROD _:_./ _)" [0, 51, 10] 10)
syntax (xsymbols)
  "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(2\<Prod>_\<in>_./ _)" [0, 51, 10] 10)
syntax (HTML output)
  "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(2\<Prod>_\<in>_./ _)" [0, 51, 10] 10)

translations -- {* Beware of argument permutation! *}
  "PROD i:A. b" == "CONST setprod (%i. b) A" 
  "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A" 

text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 @{text"\<Prod>x|P. e"}. *}

syntax
  "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(4PROD _ |/ _./ _)" [0,0,10] 10)
syntax (xsymbols)
  "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Prod>_ | (_)./ _)" [0,0,10] 10)
syntax (HTML output)
  "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Prod>_ | (_)./ _)" [0,0,10] 10)

translations
  "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
  "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"

context comm_monoid_mult
begin

lemma setprod_dvd_setprod: 
  "(\<And>a. a \<in> A \<Longrightarrow> f a dvd g a) \<Longrightarrow> setprod f A dvd setprod g A"
proof (induct A rule: infinite_finite_induct)
  case infinite then show ?case by (auto intro: dvdI)
next
  case empty then show ?case by (auto intro: dvdI)
next
  case (insert a A) then
  have "f a dvd g a" and "setprod f A dvd setprod g A" by simp_all
  then obtain r s where "g a = f a * r" and "setprod g A = setprod f A * s" by (auto elim!: dvdE)
  then have "g a * setprod g A = f a * setprod f A * (r * s)" by (simp add: ac_simps)
  with insert.hyps show ?case by (auto intro: dvdI)
qed

lemma setprod_dvd_setprod_subset:
  "finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> setprod f A dvd setprod f B"
  by (auto simp add: setprod.subset_diff ac_simps intro: dvdI)

end


subsubsection {* Properties in more restricted classes of structures *}

context comm_semiring_1
begin

lemma dvd_setprod_eqI [intro]:
  assumes "finite A" and "a \<in> A" and "b = f a"
  shows "b dvd setprod f A"
proof -
  from `finite A` have "setprod f (insert a (A - {a})) = f a * setprod f (A - {a})"
    by (intro setprod.insert) auto
  also from `a \<in> A` have "insert a (A - {a}) = A" by blast
  finally have "setprod f A = f a * setprod f (A - {a})" .
  with `b = f a` show ?thesis by simp
qed

lemma dvd_setprodI [intro]:
  assumes "finite A" and "a \<in> A"
  shows "f a dvd setprod f A"
  using assms by auto

lemma setprod_zero:
  assumes "finite A" and "\<exists>a\<in>A. f a = 0"
  shows "setprod f A = 0"
using assms proof (induct A)
  case empty then show ?case by simp
next
  case (insert a A)
  then have "f a = 0 \<or> (\<exists>a\<in>A. f a = 0)" by simp
  then have "f a * setprod f A = 0" by rule (simp_all add: insert)
  with insert show ?case by simp
qed

lemma setprod_dvd_setprod_subset2:
  assumes "finite B" and "A \<subseteq> B" and "\<And>a. a \<in> A \<Longrightarrow> f a dvd g a"
  shows "setprod f A dvd setprod g B"
proof -
  from assms have "setprod f A dvd setprod g A"
    by (auto intro: setprod_dvd_setprod)
  moreover from assms have "setprod g A dvd setprod g B"
    by (auto intro: setprod_dvd_setprod_subset)
  ultimately show ?thesis by (rule dvd_trans)
qed

end

lemma setprod_zero_iff [simp]:
  assumes "finite A"
  shows "setprod f A = (0::'a::semidom) \<longleftrightarrow> (\<exists>a\<in>A. f a = 0)"
  using assms by (induct A) (auto simp: no_zero_divisors)

lemma (in semidom_divide) setprod_diff1:
  assumes "finite A" and "f a \<noteq> 0"
  shows "setprod f (A - {a}) = (if a \<in> A then setprod f A div f a else setprod f A)"
proof (cases "a \<notin> A")
  case True then show ?thesis by simp
next
  case False with assms show ?thesis
  proof (induct A rule: finite_induct)
    case empty then show ?case by simp
  next
    case (insert b B)
    then show ?case
    proof (cases "a = b")
      case True with insert show ?thesis by simp
    next
      case False with insert have "a \<in> B" by simp
      def C \<equiv> "B - {a}"
      with `finite B` `a \<in> B`
        have *: "B = insert a C" "finite C" "a \<notin> C" by auto
      with insert show ?thesis by (auto simp add: insert_commute ac_simps)
    qed
  qed
qed

lemma (in field) setprod_inversef: 
  "finite A \<Longrightarrow> setprod (inverse \<circ> f) A = inverse (setprod f A)"
  by (induct A rule: finite_induct) simp_all

lemma (in field) setprod_dividef:
  "finite A \<Longrightarrow> (\<Prod>x\<in>A. f x / g x) = setprod f A / setprod g A"
  using setprod_inversef [of A g] by (simp add: divide_inverse setprod.distrib)

lemma setprod_Un:
  fixes f :: "'b \<Rightarrow> 'a :: field"
  assumes "finite A" and "finite B"
  and "\<forall>x\<in>A \<inter> B. f x \<noteq> 0"
  shows "setprod f (A \<union> B) = setprod f A * setprod f B / setprod f (A \<inter> B)"
proof -
  from assms have "setprod f A * setprod f B = setprod f (A \<union> B) * setprod f (A \<inter> B)"
    by (simp add: setprod.union_inter [symmetric, of A B])
  with assms show ?thesis by simp
qed

lemma (in linordered_semidom) setprod_nonneg:
  "(\<forall>a\<in>A. 0 \<le> f a) \<Longrightarrow> 0 \<le> setprod f A"
  by (induct A rule: infinite_finite_induct) simp_all

lemma (in linordered_semidom) setprod_pos:
  "(\<forall>a\<in>A. 0 < f a) \<Longrightarrow> 0 < setprod f A"
  by (induct A rule: infinite_finite_induct) simp_all

lemma (in linordered_semidom) setprod_mono:
  assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i"
  shows "setprod f A \<le> setprod g A"
  using assms by (induct A rule: infinite_finite_induct)
    (auto intro!: setprod_nonneg mult_mono)

lemma (in linordered_field) abs_setprod:
  "\<bar>setprod f A\<bar> = (\<Prod>x\<in>A. \<bar>f x\<bar>)"
  by (induct A rule: infinite_finite_induct) (simp_all add: abs_mult)

lemma setprod_eq_1_iff [simp]:
  "finite A \<Longrightarrow> setprod f A = 1 \<longleftrightarrow> (\<forall>a\<in>A. f a = (1::nat))"
  by (induct A rule: finite_induct) simp_all

lemma setprod_pos_nat:
  "finite A \<Longrightarrow> (\<forall>a\<in>A. f a > (0::nat)) \<Longrightarrow> setprod f A > 0"
  using setprod_zero_iff by (simp del: neq0_conv add: neq0_conv [symmetric])

lemma setprod_pos_nat_iff [simp]:
  "finite A \<Longrightarrow> setprod f A > 0 \<longleftrightarrow> (\<forall>a\<in>A. f a > (0::nat))"
  using setprod_zero_iff by (simp del:neq0_conv add:neq0_conv [symmetric])

end