(* Title: HOL/inductive_codegen.ML
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
Code generator for inductive predicates.
*)
signature INDUCTIVE_CODEGEN =
sig
val add : theory attribute
val setup : (theory -> theory) list
end;
structure InductiveCodegen : INDUCTIVE_CODEGEN =
struct
open Codegen;
(**** theory data ****)
structure CodegenArgs =
struct
val name = "HOL/inductive_codegen";
type T = thm list Symtab.table * unit Graph.T;
val empty = (Symtab.empty, Graph.empty);
val copy = I;
val prep_ext = I;
fun merge ((tab1, graph1), (tab2, graph2)) =
(Symtab.merge_multi Drule.eq_thm_prop (tab1, tab2),
Graph.merge (K true) (graph1, graph2));
fun print _ _ = ();
end;
structure CodegenData = TheoryDataFun(CodegenArgs);
fun warn thm = warning ("InductiveCodegen: Not a proper clause:\n" ^
string_of_thm thm);
fun add_node (g, x) = Graph.new_node (x, ()) g handle Graph.DUP _ => g;
fun add (p as (thy, thm)) =
let val (tab, graph) = CodegenData.get thy;
in (case concl_of thm of
_ $ (Const ("op :", _) $ _ $ t) => (case head_of t of
Const (s, _) =>
let val cs = foldr add_term_consts (prems_of thm, [])
in (CodegenData.put
(Symtab.update ((s,
if_none (Symtab.lookup (tab, s)) [] @ [thm]), tab),
foldr (uncurry (Graph.add_edge o pair s))
(cs, foldl add_node (graph, s :: cs))) thy, thm)
end
| _ => (warn thm; p))
| _ => (warn thm; p))
end;
fun get_clauses thy s =
let val (tab, graph) = CodegenData.get thy
in case Symtab.lookup (tab, s) of
None => (case InductivePackage.get_inductive thy s of
None => None
| Some ({names, ...}, {intrs, ...}) => Some (names, intrs))
| Some _ =>
let val Some names = find_first
(fn xs => s mem xs) (Graph.strong_conn graph)
in Some (names,
flat (map (fn s => the (Symtab.lookup (tab, s))) names))
end
end;
(**** improper tuples ****)
fun prod_factors p (Const ("Pair", _) $ t $ u) =
p :: prod_factors (1::p) t @ prod_factors (2::p) u
| prod_factors p _ = [];
fun split_prod p ps t = if p mem ps then (case t of
Const ("Pair", _) $ t $ u =>
split_prod (1::p) ps t @ split_prod (2::p) ps u
| _ => error "Inconsistent use of products") else [t];
datatype factors = FVar of int list list | FFix of int list list;
exception Factors;
fun mg_factor (FVar f) (FVar f') = FVar (f inter f')
| mg_factor (FVar f) (FFix f') =
if f' subset f then FFix f' else raise Factors
| mg_factor (FFix f) (FVar f') =
if f subset f' then FFix f else raise Factors
| mg_factor (FFix f) (FFix f') =
if f subset f' andalso f' subset f then FFix f else raise Factors;
fun dest_factors (FVar f) = f
| dest_factors (FFix f) = f;
fun infer_factors sg extra_fs (fs, (optf, t)) =
let fun err s = error (s ^ "\n" ^ Sign.string_of_term sg t)
in (case (optf, strip_comb t) of
(Some f, (Const (name, _), args)) =>
(case assoc (extra_fs, name) of
None => overwrite (fs, (name, if_none
(apsome (mg_factor f) (assoc (fs, name))) f))
| Some (fs', f') => (mg_factor f (FFix f');
foldl (infer_factors sg extra_fs)
(fs, map (apsome FFix) fs' ~~ args)))
| (Some f, (Var ((name, _), _), [])) =>
overwrite (fs, (name, if_none
(apsome (mg_factor f) (assoc (fs, name))) f))
| (None, _) => fs
| _ => err "Illegal term")
handle Factors => err "Product factor mismatch in"
end;
fun string_of_factors p ps = if p mem ps then
"(" ^ string_of_factors (1::p) ps ^ ", " ^ string_of_factors (2::p) ps ^ ")"
else "_";
(**** check if a term contains only constructor functions ****)
fun is_constrt thy =
let
val cnstrs = flat (flat (map
(map (fn (_, (_, _, cs)) => map (apsnd length) cs) o #descr o snd)
(Symtab.dest (DatatypePackage.get_datatypes thy))));
fun check t = (case strip_comb t of
(Var _, []) => true
| (Const (s, _), ts) => (case assoc (cnstrs, s) of
None => false
| Some i => length ts = i andalso forall check ts)
| _ => false)
in check end;
(**** check if a type is an equality type (i.e. doesn't contain fun) ****)
fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
| is_eqT _ = true;
(**** mode inference ****)
val term_vs = map (fst o fst o dest_Var) o term_vars;
val terms_vs = distinct o flat o (map term_vs);
fun assoc' s tab key = (case assoc (tab, key) of
None => error ("Unable to determine " ^ s ^ " of " ^ quote key)
| Some x => x);
(** collect all Vars in a term (with duplicates!) **)
fun term_vTs t = map (apfst fst o dest_Var)
(filter is_Var (foldl_aterms (op :: o Library.swap) ([], t)));
fun known_args _ _ [] = []
| known_args vs i (t::ts) = if term_vs t subset vs then i::known_args vs (i+1) ts
else known_args vs (i+1) ts;
fun get_args _ _ [] = ([], [])
| get_args is i (x::xs) = (if i mem is then apfst else apsnd) (cons x)
(get_args is (i+1) xs);
fun merge xs [] = xs
| merge [] ys = ys
| merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
else y::merge (x::xs) ys;
fun subsets i j = if i <= j then
let val is = subsets (i+1) j
in merge (map (fn ks => i::ks) is) is end
else [[]];
fun cprod ([], ys) = []
| cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
fun cprods xss = foldr (map op :: o cprod) (xss, [[]]);
datatype mode = Mode of (int list option list * int list) * mode option list;
fun modes_of modes t =
let
fun mk_modes name args = flat
(map (fn (m as (iss, is)) => map (Mode o pair m) (cprods (map
(fn (None, _) => [None]
| (Some js, arg) => map Some
(filter (fn Mode ((_, js'), _) => js=js') (modes_of modes arg)))
(iss ~~ args)))) (assoc' "modes" modes name))
in (case strip_comb t of
(Const ("op =", Type (_, [T, _])), _) =>
[Mode (([], [1]), []), Mode (([], [2]), [])] @
(if is_eqT T then [Mode (([], [1, 2]), [])] else [])
| (Const (name, _), args) => mk_modes name args
| (Var ((name, _), _), args) => mk_modes name args
| (Free (name, _), args) => mk_modes name args)
end;
datatype indprem = Prem of term list * term | Sidecond of term;
fun select_mode_prem thy modes vs ps =
find_first (is_some o snd) (ps ~~ map
(fn Prem (us, t) => find_first (fn Mode ((_, is), _) =>
let
val (_, out_ts) = get_args is 1 us;
val vTs = flat (map term_vTs out_ts);
val dupTs = map snd (duplicates vTs) @
mapfilter (curry assoc vTs) vs;
in
is subset known_args vs 1 us andalso
forall (is_constrt thy) (snd (get_args is 1 us)) andalso
term_vs t subset vs andalso
forall is_eqT dupTs
end)
(modes_of modes t)
| Sidecond t => if term_vs t subset vs then Some (Mode (([], []), []))
else None) ps);
fun check_mode_clause thy arg_vs modes (iss, is) (ts, ps) =
let
val modes' = modes @ mapfilter
(fn (_, None) => None | (v, Some js) => Some (v, [([], js)]))
(arg_vs ~~ iss);
fun check_mode_prems vs [] = Some vs
| check_mode_prems vs ps = (case select_mode_prem thy modes' vs ps of
None => None
| Some (x, _) => check_mode_prems
(case x of Prem (us, _) => vs union terms_vs us | _ => vs)
(filter_out (equal x) ps));
val (in_ts', _) = get_args is 1 ts;
val in_ts = filter (is_constrt thy) in_ts';
val in_vs = terms_vs in_ts;
val concl_vs = terms_vs ts
in
forall is_eqT (map snd (duplicates (flat (map term_vTs in_ts)))) andalso
(case check_mode_prems (arg_vs union in_vs) ps of
None => false
| Some vs => concl_vs subset vs)
end;
fun check_modes_pred thy arg_vs preds modes (p, ms) =
let val Some rs = assoc (preds, p)
in (p, filter (fn m => forall (check_mode_clause thy arg_vs modes m) rs) ms) end
fun fixp f x =
let val y = f x
in if x = y then x else fixp f y end;
fun infer_modes thy extra_modes factors arg_vs preds = fixp (fn modes =>
map (check_modes_pred thy arg_vs preds (modes @ extra_modes)) modes)
(map (fn (s, (fs, f)) => (s, cprod (cprods (map
(fn None => [None]
| Some f' => map Some (subsets 1 (length f' + 1))) fs),
subsets 1 (length f + 1)))) factors);
(**** code generation ****)
fun mk_eq (x::xs) =
let fun mk_eqs _ [] = []
| mk_eqs a (b::cs) = Pretty.str (a ^ " = " ^ b) :: mk_eqs b cs
in mk_eqs x xs end;
fun mk_tuple xs = Pretty.block (Pretty.str "(" ::
flat (separate [Pretty.str ",", Pretty.brk 1] (map single xs)) @
[Pretty.str ")"]);
fun mk_v ((names, vs), s) = (case assoc (vs, s) of
None => ((names, (s, [s])::vs), s)
| Some xs => let val s' = variant names s in
((s'::names, overwrite (vs, (s, s'::xs))), s') end);
fun distinct_v (nvs, Var ((s, 0), T)) =
apsnd (Var o rpair T o rpair 0) (mk_v (nvs, s))
| distinct_v (nvs, t $ u) =
let
val (nvs', t') = distinct_v (nvs, t);
val (nvs'', u') = distinct_v (nvs', u);
in (nvs'', t' $ u') end
| distinct_v x = x;
fun compile_match nvs eq_ps out_ps success_p fail_p =
let val eqs = flat (separate [Pretty.str " andalso", Pretty.brk 1]
(map single (flat (map (mk_eq o snd) nvs) @ eq_ps)));
in
Pretty.block
([Pretty.str "(fn ", mk_tuple out_ps, Pretty.str " =>", Pretty.brk 1] @
(Pretty.block ((if eqs=[] then [] else Pretty.str "if " ::
[Pretty.block eqs, Pretty.brk 1, Pretty.str "then "]) @
(success_p ::
(if eqs=[] then [] else [Pretty.brk 1, Pretty.str "else ", fail_p]))) ::
[Pretty.brk 1, Pretty.str "| _ => ", fail_p, Pretty.str ")"]))
end;
fun modename thy s (iss, is) = space_implode "__"
(mk_const_id (sign_of thy) s ::
map (space_implode "_" o map string_of_int) (mapfilter I iss @ [is]));
fun compile_expr thy dep brack (gr, (None, t)) =
apsnd single (invoke_codegen thy dep brack (gr, t))
| compile_expr _ _ _ (gr, (Some _, Var ((name, _), _))) =
(gr, [Pretty.str name])
| compile_expr thy dep brack (gr, (Some (Mode (mode, ms)), t)) =
let
val (Const (name, _), args) = strip_comb t;
val (gr', ps) = foldl_map
(compile_expr thy dep true) (gr, ms ~~ args);
in (gr', (if brack andalso not (null ps) then
single o parens o Pretty.block else I)
(flat (separate [Pretty.brk 1]
([Pretty.str (modename thy name mode)] :: ps))))
end;
fun compile_clause thy gr dep all_vs arg_vs modes (iss, is) (ts, ps) =
let
val modes' = modes @ mapfilter
(fn (_, None) => None | (v, Some js) => Some (v, [([], js)]))
(arg_vs ~~ iss);
fun check_constrt ((names, eqs), t) =
if is_constrt thy t then ((names, eqs), t) else
let val s = variant names "x";
in ((s::names, (s, t)::eqs), Var ((s, 0), fastype_of t)) end;
val (in_ts, out_ts) = get_args is 1 ts;
val ((all_vs', eqs), in_ts') =
foldl_map check_constrt ((all_vs, []), in_ts);
fun compile_prems out_ts' vs names gr [] =
let
val (gr2, out_ps) = foldl_map
(invoke_codegen thy dep false) (gr, out_ts);
val (gr3, eq_ps) = foldl_map (fn (gr, (s, t)) =>
apsnd (Pretty.block o cons (Pretty.str (s ^ " = ")) o single)
(invoke_codegen thy dep false (gr, t))) (gr2, eqs);
val (nvs, out_ts'') = foldl_map distinct_v
((names, map (fn x => (x, [x])) vs), out_ts');
val (gr4, out_ps') = foldl_map
(invoke_codegen thy dep false) (gr3, out_ts'');
in
(gr4, compile_match (snd nvs) eq_ps out_ps'
(Pretty.block [Pretty.str "Seq.single", Pretty.brk 1, mk_tuple out_ps])
(Pretty.str "Seq.empty"))
end
| compile_prems out_ts vs names gr ps =
let
val vs' = distinct (flat (vs :: map term_vs out_ts));
val Some (p, mode as Some (Mode ((_, js), _))) =
select_mode_prem thy modes' (arg_vs union vs') ps;
val ps' = filter_out (equal p) ps;
in
(case p of
Prem (us, t) =>
let
val (in_ts, out_ts') = get_args js 1 us;
val (gr1, in_ps) = foldl_map
(invoke_codegen thy dep false) (gr, in_ts);
val (nvs, out_ts'') = foldl_map distinct_v
((names, map (fn x => (x, [x])) vs), out_ts);
val (gr2, out_ps) = foldl_map
(invoke_codegen thy dep false) (gr1, out_ts'');
val (gr3, ps) = compile_expr thy dep false (gr2, (mode, t));
val (gr4, rest) = compile_prems out_ts' vs' (fst nvs) gr3 ps';
in
(gr4, compile_match (snd nvs) [] out_ps
(Pretty.block (ps @
[Pretty.brk 1, mk_tuple in_ps,
Pretty.str " :->", Pretty.brk 1, rest]))
(Pretty.str "Seq.empty"))
end
| Sidecond t =>
let
val (gr1, side_p) = invoke_codegen thy dep true (gr, t);
val (nvs, out_ts') = foldl_map distinct_v
((names, map (fn x => (x, [x])) vs), out_ts);
val (gr2, out_ps) = foldl_map
(invoke_codegen thy dep false) (gr1, out_ts')
val (gr3, rest) = compile_prems [] vs' (fst nvs) gr2 ps';
in
(gr3, compile_match (snd nvs) [] out_ps
(Pretty.block [Pretty.str "?? ", side_p,
Pretty.str " :->", Pretty.brk 1, rest])
(Pretty.str "Seq.empty"))
end)
end;
val (gr', prem_p) = compile_prems in_ts' [] all_vs' gr ps;
in
(gr', Pretty.block [Pretty.str "Seq.single inp :->", Pretty.brk 1, prem_p])
end;
fun compile_pred thy gr dep prfx all_vs arg_vs modes s cls mode =
let val (gr', cl_ps) = foldl_map (fn (gr, cl) =>
compile_clause thy gr dep all_vs arg_vs modes mode cl) (gr, cls)
in
((gr', "and "), Pretty.block
([Pretty.block (separate (Pretty.brk 1)
(Pretty.str (prfx ^ modename thy s mode) :: map Pretty.str arg_vs) @
[Pretty.str " inp ="]),
Pretty.brk 1] @
flat (separate [Pretty.str " ++", Pretty.brk 1] (map single cl_ps))))
end;
fun compile_preds thy gr dep all_vs arg_vs modes preds =
let val ((gr', _), prs) = foldl_map (fn ((gr, prfx), (s, cls)) =>
foldl_map (fn ((gr', prfx'), mode) =>
compile_pred thy gr' dep prfx' all_vs arg_vs modes s cls mode)
((gr, prfx), the (assoc (modes, s)))) ((gr, "fun "), preds)
in
(gr', space_implode "\n\n" (map Pretty.string_of (flat prs)) ^ ";\n\n")
end;
(**** processing of introduction rules ****)
exception Modes of
(string * (int list option list * int list) list) list *
(string * (int list list option list * int list list)) list;
fun lookup_modes gr dep = apfst flat (apsnd flat (ListPair.unzip
(map ((fn (Some (Modes x), _) => x | _ => ([], [])) o Graph.get_node gr)
(Graph.all_preds gr [dep]))));
fun string_of_mode (iss, is) = space_implode " -> " (map
(fn None => "X"
| Some js => enclose "[" "]" (commas (map string_of_int js)))
(iss @ [Some is]));
fun print_modes modes = message ("Inferred modes:\n" ^
space_implode "\n" (map (fn (s, ms) => s ^ ": " ^ commas (map
string_of_mode ms)) modes));
fun print_factors factors = message ("Factors:\n" ^
space_implode "\n" (map (fn (s, (fs, f)) => s ^ ": " ^
space_implode " -> " (map
(fn None => "X" | Some f' => string_of_factors [] f')
(fs @ [Some f]))) factors));
fun mk_extra_defs thy gr dep names ts =
foldl (fn (gr, name) =>
if name mem names then gr
else (case get_clauses thy name of
None => gr
| Some (names, intrs) =>
mk_ind_def thy gr dep names intrs))
(gr, foldr add_term_consts (ts, []))
and mk_ind_def thy gr dep names intrs =
let val ids = map (mk_const_id (sign_of thy)) names
in Graph.add_edge (hd ids, dep) gr handle Graph.UNDEF _ =>
let
fun dest_prem factors (_ $ (p as (Const ("op :", _) $ t $ u))) =
(case head_of u of
Const (name, _) => (case assoc (factors, name) of
None => Sidecond p
| Some f => Prem (split_prod [] f t, u))
| Var ((name, _), _) => Prem (split_prod []
(the (assoc (factors, name))) t, u))
| dest_prem factors (_ $ ((eq as Const ("op =", _)) $ t $ u)) =
Prem ([t, u], eq)
| dest_prem factors (_ $ t) = Sidecond t;
fun add_clause factors (clauses, intr) =
let
val _ $ (_ $ t $ u) = Logic.strip_imp_concl intr;
val Const (name, _) = head_of u;
val prems = map (dest_prem factors) (Logic.strip_imp_prems intr);
in
(overwrite (clauses, (name, if_none (assoc (clauses, name)) [] @
[(split_prod [] (the (assoc (factors, name))) t, prems)])))
end;
fun add_prod_factors extra_fs (fs, _ $ (Const ("op :", _) $ t $ u)) =
(case apsome (get_clauses thy o fst) (try dest_Const (head_of u)) of
Some None => fs
| _ => infer_factors (sign_of thy) extra_fs
(fs, (Some (FVar (prod_factors [] t)), u)))
| add_prod_factors _ (fs, _) = fs;
val intrs' = map (rename_term o #prop o rep_thm o standard) intrs;
val _ $ (_ $ _ $ u) = Logic.strip_imp_concl (hd intrs');
val (_, args) = strip_comb u;
val arg_vs = flat (map term_vs args);
val gr' = mk_extra_defs thy
(Graph.add_edge (hd ids, dep)
(Graph.new_node (hd ids, (None, "")) gr)) (hd ids) names intrs';
val (extra_modes, extra_factors) = lookup_modes gr' (hd ids);
val fs = map (apsnd dest_factors)
(foldl (add_prod_factors extra_factors) ([], flat (map (fn t =>
Logic.strip_imp_concl t :: Logic.strip_imp_prems t) intrs')));
val _ = (case map fst fs \\ names \\ arg_vs of
[] => ()
| xs => error ("Non-inductive sets: " ^ commas_quote xs));
val factors = mapfilter (fn (name, f) =>
if name mem arg_vs then None
else Some (name, (map (curry assoc fs) arg_vs, f))) fs;
val clauses =
foldl (add_clause (fs @ map (apsnd snd) extra_factors)) ([], intrs');
val modes = infer_modes thy extra_modes factors arg_vs clauses;
val _ = print_factors factors;
val _ = print_modes modes;
val (gr'', s) = compile_preds thy gr' (hd ids) (terms_vs intrs') arg_vs
(modes @ extra_modes) clauses;
in
(Graph.map_node (hd ids) (K (Some (Modes (modes, factors)), s)) gr'')
end
end;
fun mk_ind_call thy gr dep t u is_query = (case head_of u of
Const (s, T) => (case (get_clauses thy s, get_assoc_code thy s T) of
(None, _) => None
| (Some (names, intrs), None) =>
let
fun mk_mode (((ts, mode), i), Const ("dummy_pattern", _)) =
((ts, mode), i+1)
| mk_mode (((ts, mode), i), t) = ((ts @ [t], mode @ [i]), i+1);
val gr1 = mk_extra_defs thy
(mk_ind_def thy gr dep names intrs) dep names [u];
val (modes, factors) = lookup_modes gr1 dep;
val ts = split_prod [] (snd (the (assoc (factors, s)))) t;
val (ts', is) = if is_query then
fst (foldl mk_mode ((([], []), 1), ts))
else (ts, 1 upto length ts);
val mode = (case find_first (fn Mode ((_, js), _) => is=js)
(modes_of modes u) of
None => error ("No such mode for " ^ s ^ ": " ^
string_of_mode ([], is))
| mode => mode);
val (gr2, in_ps) = foldl_map
(invoke_codegen thy dep false) (gr1, ts');
val (gr3, ps) = compile_expr thy dep false (gr2, (mode, u))
in
Some (gr3, Pretty.block
(ps @ [Pretty.brk 1, mk_tuple in_ps]))
end
| _ => None)
| _ => None);
fun inductive_codegen thy gr dep brack (Const ("op :", _) $ t $ u) =
((case mk_ind_call thy gr dep (Term.no_dummy_patterns t) u false of
None => None
| Some (gr', call_p) => Some (gr', (if brack then parens else I)
(Pretty.block [Pretty.str "?! (", call_p, Pretty.str ")"])))
handle TERM _ => mk_ind_call thy gr dep t u true)
| inductive_codegen thy gr dep brack _ = None;
val setup =
[add_codegen "inductive" inductive_codegen,
CodegenData.init,
add_attribute "ind" (Scan.succeed add)];
end;
(**** combinators for code generated from inductive predicates ****)
infix 5 :->;
infix 3 ++;
fun s :-> f = Seq.flat (Seq.map f s);
fun s1 ++ s2 = Seq.append (s1, s2);
fun ?? b = if b then Seq.single () else Seq.empty;
fun ?! s = is_some (Seq.pull s);
fun op_61__1 x = Seq.single x;
val op_61__2 = op_61__1;
fun op_61__1_2 (x, y) = ?? (x = y);